3,052 research outputs found

    PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network

    Full text link
    Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts have been made to build an AI model that can render realistic music audio from musical scores. Directly synthesizing audio with sound sample libraries often leads to mechanical and deadpan results, since musical scores do not contain performance-level information, such as subtle changes in timing and dynamics. Moreover, while the task may sound like a text-to-speech synthesis problem, there are fundamental differences since music audio has rich polyphonic sounds. To build such an AI performer, we propose in this paper a deep convolutional model that learns in an end-to-end manner the score-to-audio mapping between a symbolic representation of music called the piano rolls and an audio representation of music called the spectrograms. The model consists of two subnets: the ContourNet, which uses a U-Net structure to learn the correspondence between piano rolls and spectrograms and to give an initial result; and the TextureNet, which further uses a multi-band residual network to refine the result by adding the spectral texture of overtones and timbre. We train the model to generate music clips of the violin, cello, and flute, with a dataset of moderate size. We also present the result of a user study that shows our model achieves higher mean opinion score (MOS) in naturalness and emotional expressivity than a WaveNet-based model and two commercial sound libraries. We open our source code at https://github.com/bwang514/PerformanceNetComment: 8 pages, 6 figures, AAAI 2019 camera-ready versio

    Pop Music Highlighter: Marking the Emotion Keypoints

    Get PDF
    The goal of music highlight extraction is to get a short consecutive segment of a piece of music that provides an effective representation of the whole piece. In a previous work, we introduced an attention-based convolutional recurrent neural network that uses music emotion classification as a surrogate task for music highlight extraction, for Pop songs. The rationale behind that approach is that the highlight of a song is usually the most emotional part. This paper extends our previous work in the following two aspects. First, methodology-wise we experiment with a new architecture that does not need any recurrent layers, making the training process faster. Moreover, we compare a late-fusion variant and an early-fusion variant to study which one better exploits the attention mechanism. Second, we conduct and report an extensive set of experiments comparing the proposed attention-based methods against a heuristic energy-based method, a structural repetition-based method, and a few other simple feature-based methods for this task. Due to the lack of public-domain labeled data for highlight extraction, following our previous work we use the RWC POP 100-song data set to evaluate how the detected highlights overlap with any chorus sections of the songs. The experiments demonstrate the effectiveness of our methods over competing methods. For reproducibility, we open source the code and pre-trained model at https://github.com/remyhuang/pop-music-highlighter/.Comment: Transactions of the ISMIR vol. 1, no.

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201
    corecore