3 research outputs found

    Deep learning methods for biometric recognition based on eye information

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities

    DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION

    Get PDF
    The accuracy of ocular biometric systems is critically dependent on the image acquisition conditions and segmentation methods. To minimize recognition error robust segmentation algorithms are required. Among all ocular traits, iris got the most attention due to high recognition accuracy. New modalities such as sclera blood vessels and periocular region were also proposed as autonomous (or iris-complementary) modalities. In this work we tackle ocular segmentation and recognition problems using deep learning methods, which represent state-of-the-art in many computer vision related tasks. We individually evaluate three recognition pipelines based on different ocular modalities (sclera blood vessels, periocular region, iris). The pipelines are then fused into a single biometric system and its performance is evaluated. The main focus is sclera recognition in the scope of which we i) create a new dataset named SBVPI, ii) propose and evaluate segmentation approaches, which won the first place on SS(ER)BC competitions, and iii) develop and evaluate the rest of the sclera-based recognition pipeline. The next contribution of this work is multi-class eye segmentation technique, which gives promising results. We also propose and evaluate deep learning pipeline for periocular recognition. For iris recognition we use an existing pipeline and evaluate it on our dataset. With deep learning we achieve promising recognition results for each individual modality. We further improve recognition accuracy with multi-modal fusion of all three modalities

    An unsupervised approach for eye sclera segmentation

    No full text
    We present an unsupervised sclera segmentation method for eye color images. The proposed approach operates on a visible spectrum RGB eye image and does not require any prior knowledge such as eyelid or iris center coordinate detection. The eye color input image is enhanced by an adaptive histogram normalization to produce a gray level image in which the sclera is highlighted. A feature extraction process is involved both in the image binarization and in the computation of scores to assign to each connected components of the foreground. The binarization process is based on clustering and adaptive thresholding. Finally, the selection of foreground components identifying the sclera is performed on the analysis of the computed scores and of the positions between the foreground components. The proposed method was ranked 2nd in the Sclera Segmentation and Eye Recognition Benchmarking Competition (SSRBC 2017), providing satisfactory performance in terms of precision. © Springer International Publishing AG, part of Springer Nature 2018
    corecore