3,573 research outputs found

    An Uncertainty Visual Analytics Framework for Functional Magnetic Resonance Imaging

    Get PDF
    Improving understanding of the human brain is one of the leading pursuits of modern scientific research. Functional magnetic resonance imaging (fMRI) is a foundational technique for advanced analysis and exploration of the human brain. The modality scans the brain in a series of temporal frames which provide an indication of the brain activity either at rest or during a task. The images can be used to study the workings of the brain, leading to the development of an understanding of healthy brain function, as well as characterising diseases such as schizophrenia and bipolar disorder. Extracting meaning from fMRI relies on an analysis pipeline which can be broadly categorised into three phases: (i) data acquisition and image processing; (ii) image analysis; and (iii) visualisation and human interpretation. The modality and analysis pipeline, however, are hampered by a range of uncertainties which can greatly impact the study of the brain function. Each phase contains a set of required and optional steps, containing inherent limitations and complex parameter selection. These aspects lead to the uncertainty that impacts the outcome of studies. Moreover, the uncertainties that arise early in the pipeline, are compounded by decisions and limitations further along in the process. While a large amount of research has been undertaken to examine the limitations and variable parameter selection, statistical approaches designed to address the uncertainty have not managed to mitigate the issues. Visual analytics, meanwhile, is a research domain which seeks to combine advanced visual interfaces with specialised interaction and automated statistical processing designed to exploit human expertise and understanding. Uncertainty visual analytics (UVA) tools, which aim to minimise and mitigate uncertainties, have been proposed for a variety of data, including astronomical, financial, weather and crime. Importantly, UVA approaches have also seen success in medical imaging and analysis. However, there are many challenges surrounding the application of UVA to each research domain. Principally, these involve understanding what the uncertainties are and the possible effects so they may be connected to visualisation and interaction approaches. With fMRI, the breadth of uncertainty arising in multiple stages along the pipeline and the compound effects, make it challenging to propose UVAs which meaningfully integrate into pipeline. In this thesis, we seek to address this challenge by proposing a unified UVA framework for fMRI. To do so, we first examine the state-of-the-art landscape of fMRI uncertainties, including the compound effects, and explore how they are currently addressed. This forms the basis of a field we term fMRI-UVA. We then present our overall framework, which is designed to meet the requirements of fMRI visual analysis, while also providing an indication and understanding of the effects of uncertainties on the data. Our framework consists of components designed for the spatial, temporal and processed imaging data. Alongside the framework, we propose two visual extensions which can be used as standalone UVA applications or be integrated into the framework. Finally, we describe a conceptual algorithmic approach which incorporates more data into an existing measure used in the fMRI analysis pipeline

    Uncertainty-aware Visualization in Medical Imaging - A Survey

    Get PDF
    Medical imaging (image acquisition, image transformation, and image visualization) is a standard tool for clinicians in order to make diagnoses, plan surgeries, or educate students. Each of these steps is affected by uncertainty, which can highly influence the decision-making process of clinicians. Visualization can help in understanding and communicating these uncertainties. In this manuscript, we aim to summarize the current state-of-the-art in uncertainty-aware visualization in medical imaging. Our report is based on the steps involved in medical imaging as well as its applications. Requirements are formulated to examine the considered approaches. In addition, this manuscript shows which approaches can be combined to form uncertainty-aware medical imaging pipelines. Based on our analysis, we are able to point to open problems in uncertainty-aware medical imaging

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end
    corecore