111 research outputs found

    Discriminative Reranking for Spoken Language Understanding

    Full text link

    Ensemble Parsing and its Effect on Machine Translation

    Get PDF
    The focus of much of dependency parsing is on creating new modeling techniques and examining new feature sets for existing dependency models. Often these new models are lucky to achieve equivalent results with the current state of the art results and often perform worse. These approaches are for languages that are often resource-rich and have ample training data available for dependency parsing. For this reason, the accuracy scores are often quite high. This, by its very nature, makes it quite difficult to create a significantly large increase in the current state-of-the-art. Research in this area is often concerned with small accuracy changes or very specific localized changes, such as increasing accuracy of a particular linguistic construction. With so many modeling techniques available to languages with large resources the problem exists on how to exploit the current techniques with the use of combination, or ensemble, techniques along with this plethora of data. Dependency parsers are almost ubiquitously evaluated on their accuracy scores, these scores say nothing of the complexity and usefulness of the resulting structures. The structures may have more complexity due to the depth of their co- ordination or noun phrases. As dependency parses are basic structures in which other systems are built upon, it would seem more reasonable to judge these parsers down the NLP pipeline. The types of parsing errors that cause significant problems in other NLP applications is currently an unknown

    Modelling input texts: from Tree Kernels to Deep Learning

    Get PDF
    One of the core questions when designing modern Natural Language Processing (NLP) systems is how to model input textual data such that the learning algorithm is provided with enough information to estimate accurate decision functions. The mainstream approach is to represent input objects as feature vectors where each value encodes some of their aspects, e.g., syntax, semantics, etc. Feature-based methods have demonstrated state-of-the-art results on various NLP tasks. However, designing good features is a highly empirical-driven process, it greatly depends on a task requiring a significant amount of domain expertise. Moreover, extracting features for complex NLP tasks often requires expensive pre-processing steps running a large number of linguistic tools while relying on external knowledge sources that are often not available or hard to get. Hence, this process is not cheap and often constitutes one of the major challenges when attempting a new task or adapting to a different language or domain. The problem of modelling input objects is even more acute in cases when the input examples are not just single objects but pairs of objects, such as in various learning to rank problems in Information Retrieval and Natural Language processing. An alternative to feature-based methods is using kernels which are essentially non-linear functions mapping input examples into some high dimensional space thus allowing for learning decision functions with higher discriminative power. Kernels implicitly generate a very large number of features computing similarity between input examples in that implicit space. A well-designed kernel function can greatly reduce the effort to design a large set of manually designed features often leading to superior results. However, in the recent years, the use of kernel methods in NLP has been greatly under-estimated primarily due to the following reasons: (i) learning with kernels is slow as it requires to carry out optimization in the dual space leading to quadratic complexity; (ii) applying kernels to the input objects encoded with vanilla structures, e.g., generated by syntactic parsers, often yields minor improvements over carefully designed feature-based methods. In this thesis, we adopt the kernel learning approach for solving complex NLP tasks and primarily focus on solutions to the aforementioned problems posed by the use of kernels. In particular, we design novel learning algorithms for training Support Vector Machines with structural kernels, e.g., tree kernels, considerably speeding up the training over the conventional SVM training methods. We show that using the training algorithms developed in this thesis allows for training tree kernel models on large-scale datasets containing millions of instances, which was not possible before. Next, we focus on the problem of designing input structures that are fed to tree kernel functions to automatically generate a large set of tree-fragment features. We demonstrate that previously used plain structures generated by syntactic parsers, e.g., syntactic or dependency trees, are often a poor choice thus compromising the expressivity offered by a tree kernel learning framework. We propose several effective design patterns of the input tree structures for various NLP tasks ranging from sentiment analysis to answer passage reranking. The central idea is to inject additional semantic information relevant for the task directly into the tree nodes and let the expressive kernels generate rich feature spaces. For the opinion mining tasks, the additional semantic information injected into tree nodes can be word polarity labels, while for more complex tasks of modelling text pairs the relational information about overlapping words in a pair appears to significantly improve the accuracy of the resulting models. Finally, we observe that both feature-based and kernel methods typically treat words as atomic units where matching different yet semantically similar words is problematic. Conversely, the idea of distributional approaches to model words as vectors is much more effective in establishing a semantic match between words and phrases. While tree kernel functions do allow for a more flexible matching between phrases and sentences through matching their syntactic contexts, their representation can not be tuned on the training set as it is possible with distributional approaches. Recently, deep learning approaches have been applied to generalize the distributional word matching problem to matching sentences taking it one step further by learning the optimal sentence representations for a given task. Deep neural networks have already claimed state-of-the-art performance in many computer vision, speech recognition, and natural language tasks. Following this trend, this thesis also explores the virtue of deep learning architectures for modelling input texts and text pairs where we build on some of the ideas to model input objects proposed within the tree kernel learning framework. In particular, we explore the idea of relational linking (proposed in the preceding chapters to encode text pairs using linguistic tree structures) to design a state-of-the-art deep learning architecture for modelling text pairs. We compare the proposed deep learning models that require even less manual intervention in the feature design process then previously described tree kernel methods that already offer a very good trade-off between the feature-engineering effort and the expressivity of the resulting representation. Our deep learning models demonstrate the state-of-the-art performance on a recent benchmark for Twitter Sentiment Analysis, Answer Sentence Selection and Microblog retrieval

    Learning Chinese language structures with multiple views

    Get PDF
    Motivated by the inadequacy of single view approaches in many areas in NLP, we study multi-view Chinese language processing, including word segmentation, part-of-speech (POS) tagging, syntactic parsing and semantic role labeling (SRL), in this thesis. We consider three situations of multiple views in statistical NLP: (1) Heterogeneous computational models have been designed for a given problem; (2) Heterogeneous annotation data is available to train systems; (3) Supervised and unsupervised machine learning techniques are applicable. First, we comparatively analyze successful single view approaches for Chinese lexical, syntactic and semantic processing. Our analysis highlights the diversity between heterogenous systems built on different views, and motivates us to improve the state-of-the-art by combining or integrating heterogeneous approaches. Second, we study the annotation ensemble problem, i.e. learning from multiple data sets under different annotation standards. We propose a series of generalized stacking models to effectively utilize heterogeneous labeled data to reduce approximation errors for word segmentation and parsing. Finally, we are concerned with bridging the gap between unsupervised and supervised learning paradigms. We introduce feature induction solutions that harvest useful linguistic knowledge from large-scale unlabeled data and effectively use them as new features to enhance discriminative learning based systems. For word segmentation, we present a comparative study of word-based and character-based approaches. Inspired by the diversity of the two views, we design a novel stacked sub-word tagging model for joint word segmentation and POS tagging, which is robust to integrate different models, even models trained on heterogeneous annotations. To benefit from unsupervised word segmentation, we derive expressive string knowledge from unlabeled data which significantly enhances a strong supervised segmenter. For POS tagging, we introduce two linguistically motivated improvements: (1) combining syntax-free sequential tagging and syntax-based chart parsing results to better capture syntagmatic lexical relations and (2) integrating word clusters acquired from unlabeled data to better capture paradigmatic lexical relations. For syntactic parsing, we present a comparative analysis for generative PCFG-LA constituency parsing and discriminative graph-based dependency parsing. To benefit from the diversity of parsing in different formalisms, we implement a previously introduced stacking method and propose a novel Bagging model to combine complementary strengths of grammar-free and grammar-based models. In addition to the study on the syntactic formalism, we also propose a reranking model to explore heterogenous treebanks that are labeled under different annotation scheme. Finally, we continue our efforts on combining strengths of supervised and unsupervised learning, and evaluate the impact of word clustering on different syntactic processing tasks. Our work on SRL focus on improving the full parsing method with linguistically rich features and a chunking strategy. Furthermore, we developed a partial parsing based semantic chunking method, which has complementary strengths to the full parsing based method. Based on our work, Zhuang and Zong (2010) successfully improve the state-of-the-art by combining full and partial parsing based SRL systems.Motiviert durch die Unzulänglichkeit der Ansätze mit dem einzigen Ansicht in vielen Bereichen in NLP, untersuchen wir Chinesische Sprache Verarbeitung mit mehrfachen Ansichten, einschließlich Wortsegmentierung, Part-of-Speech (POS)-Tagging und syntaktische Parsing und die Kennzeichnung der semantische Rolle (SRL) in dieser Arbeit . Wir betrachten drei Situationen von mehreren Ansichten in der statistischen NLP: (1) Heterogene computergestützte Modelle sind für ein gegebenes Problem entwurft, (2) Heterogene Annotationsdaten sind verfügbar, um die Systeme zu trainieren, (3) überwachten und unüberwachten Methoden des maschinellen Lernens sind zur Verfügung gestellt. Erstens, wir analysieren vergleichsweise erfolgreiche Ansätze mit einzigen Ansicht für chinesische lexikalische, syntaktische und semantische Verarbeitung. Unsere Analyse zeigt die Unterschiede zwischen den heterogenen Systemen, die auf verschiedenen Ansichten gebaut werden, und motiviert uns, die state-of-the-Art durch die Kombination oder Integration heterogener Ansätze zu verbessern. Zweitens, untersuchen wir die Annotation Ensemble Problem, d.h. das Lernen aus mehreren Datensätzen unter verschiedenen Annotation Standards. Wir schlagen eine Reihe allgemeiner Stapeln Modelle, um eine effektive Nutzung heterogener Daten zu beschriften, und um Approximationsfehler für Wort Segmentierung und Analyse zu reduzieren. Schließlich sind wir besorgt mit der Überbrückung der Kluft zwischen unüberwachten und überwachten Lernens Paradigmen. Wir führen Induktion Feature-Lösungen, die nützliche Sprachkenntnisse von großflächigen unmarkierter Daten ernte, und die effektiv nutzen als neue Features, um die unterscheidenden Lernen basierten Systemen zu verbessern. Für die Wortsegmentierung, präsentieren wir eine vergleichende Studie der Wort-basierte und Charakter-basierten Ansätzen. Inspiriert von der Vielfalt der beiden Ansichten, entwerfen wir eine neuartige gestapelt Sub-Wort-Tagging-Modell für gemeinsame Wort-Segmentierung und POS-Tagging, die robust ist, um verschiedene Modelle zu integrieren, auch Modelle auf heterogenen Annotationen geschult. Um den unbeaufsichtigten Wortsegmentierung zu profitieren, leiten wir ausdrucksstarke Zeichenfolge Wissen von unmarkierten Daten. Diese Methode hat eine überwachte Methode erheblich verbessert. Für POS-Tagging, führen wir zwei linguistisch motiviert Verbesserungen: (1) die Kombination von Syntaxfreie sequentielle Tagging und Syntaxbasierten Grafik-Parsing-Ergebnisse, um syntagmatische lexikalische Beziehungen besser zu erfassen (2) die Integration von Wortclusteren von nicht markierte Daten, um die paradigmatische lexikalische Beziehungen besser zu erfassen. Für syntaktische Parsing präsentieren wir eine vergleichenbare Analyse für generative PCFG-LA Wahlkreis Parsing und diskriminierende Graphen-basierte Abhängigkeit Parsing. Um aus der Vielfalt der Parsen in unterschiedlichen Formalismen zu profitieren, setzen wir eine zuvor eingeführte Stacking-Methode und schlagen eine neuartige Schrumpfbeutel-Modell vor, um die ergänzenden Stärken der Grammatik und Grammatik-free-basierte Modelle zu kombinieren. Neben dem syntaktischen Formalismus, wir schlagen auch ein Modell, um heterogene reranking Baumbanken, die unter verschiedenen Annotationsschema beschriftet sind zu erkunden. Schließlich setzen wir unsere Bemühungen auf die Bündelung von Stärken des überwachten und unüberwachten Lernen, und bewerten wir die Auswirkungen der Wort-Clustering auf verschiedene syntaktische Verarbeitung Aufgaben. Unsere Arbeit an SRL ist konzentriert auf die Verbesserung der vollen Parsingsmethode mit linguistischen umfangreichen Funktionen und einer Chunkingstrategie. Weiterhin entwickelten wir eine semantische Chunkingmethode basiert auf dem partiellen Parsing, die die komplementäre Stärken gegen die die Methode basiert auf dem vollen Parsing hat. Basiert auf unserer Arbeit, Zhuang und Zong (2010) hat den aktuelle Stand erfolgreich verbessert durch die Kombination von voll-und partielle-Parsing basierte SRL Systeme

    Extraction and Classification of Drug-Drug Interaction from Biomedical Text Using a Two-Stage Classifier

    Get PDF
    One of the critical causes of medical errors is Drug-Drug interaction (DDI), which occurs when one drug increases or decreases the effect of another drug. We propose a machine learning system to extract and classify drug-drug interactions from the biomedical literature, using the annotated corpus from the DDIExtraction-2013 shared task challenge. Our approach applies a two-stage classifier to handle the highly unbalanced class distribution in the corpus. The first stage is designed for binary classification of drug pairs as interacting or non-interacting, and the second stage for further classification of interacting pairs into one of four interacting types: advise, effect, mechanism, and int. To find the set of best features for classification, we explored many features, including stemmed words, bigrams, part of speech tags, verb lists, parse tree information, mutual information, and similarity measures, among others. As the system faced two different classification tasks, binary and multi-class, we also explored various classifiers in each stage. Our results show that the best performing classifier in both stages was Support Vector Machines, and the best performing features were 1000 top informative words and part of speech tags between two main drugs. We obtained an F-Measure of 0.64, showing a 12% improvement over our submitted system to the DDIExtraction 2013 competition

    Detecting grammatical errors with treebank-induced, probabilistic parsers

    Get PDF
    Today's grammar checkers often use hand-crafted rule systems that define acceptable language. The development of such rule systems is labour-intensive and has to be repeated for each language. At the same time, grammars automatically induced from syntactically annotated corpora (treebanks) are successfully employed in other applications, for example text understanding and machine translation. At first glance, treebank-induced grammars seem to be unsuitable for grammar checking as they massively over-generate and fail to reject ungrammatical input due to their high robustness. We present three new methods for judging the grammaticality of a sentence with probabilistic, treebank-induced grammars, demonstrating that such grammars can be successfully applied to automatically judge the grammaticality of an input string. Our best-performing method exploits the differences between parse results for grammars trained on grammatical and ungrammatical treebanks. The second approach builds an estimator of the probability of the most likely parse using grammatical training data that has previously been parsed and annotated with parse probabilities. If the estimated probability of an input sentence (whose grammaticality is to be judged by the system) is higher by a certain amount than the actual parse probability, the sentence is flagged as ungrammatical. The third approach extracts discriminative parse tree fragments in the form of CFG rules from parsed grammatical and ungrammatical corpora and trains a binary classifier to distinguish grammatical from ungrammatical sentences. The three approaches are evaluated on a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting common grammatical errors into the British National Corpus. The results are compared to two traditional approaches, one that uses a hand-crafted, discriminative grammar, the XLE ParGram English LFG, and one based on part-of-speech n-grams. In addition, the baseline methods and the new methods are combined in a machine learning-based framework, yielding further improvements

    Investigations into semantic role labeling of propbank and nombank

    Get PDF
    Master'sMASTER OF SCIENC
    corecore