779 research outputs found

    Improving the Deductive System DES with Persistence by Using SQL DBMS's

    Get PDF
    This work presents how persistent predicates have been included in the in-memory deductive system DES by relying on external SQL database management systems. We introduce how persistence is supported from a user-point of view and the possible applications the system opens up, as the deductive expressive power is projected to relational databases. Also, we describe how it is possible to intermix computations of the deductive engine and the external database, explaining its implementation and some optimizations. Finally, a performance analysis is undertaken, comparing the system with current relational database systems.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    dbProlog: a Prolog/relational database interface

    Get PDF
    dbProlog is a prototype system that provides a C-Prolog user access to data in an external relational database via both loose and tight coupling. To the application programmer, dbProlog is a group of six built-in Prolog predicates that effect communication between a C-Prolog process and a database management system process. Prolog application program statements may be written using the six predicates to make the interface transparent to an end-user. The system is based on a driver process that must be customized to the interfaced DBMS and whose primary function is the translation of requests and replies between C-Prolog and the DBMS. dbProlog supports Prolog\u27s depth-first search on database retrievals by producing the next record when the retrieval predicate is encountered upon backtracking. dbProlog also supports multiple active database retrievals, as may be required by a Prolog rule that references two or more database retrievals, or by a recursive rule

    Making an Embedded DBMS JIT-friendly

    Get PDF
    While database management systems (DBMSs) are highly optimized, interactions across the boundary between the programming language (PL) and the DBMS are costly, even for in-process embedded DBMSs. In this paper, we show that programs that interact with the popular embedded DBMS SQLite can be significantly optimized - by a factor of 3.4 in our benchmarks - by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts of SQLite's C interpreter with RPython code and composing the resulting meta-tracing virtual machine (VM) - called SQPyte - with the PyPy VM. SQPyte does not compromise stand-alone SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.Comment: 24 pages, 18 figure

    DEDUCTIVE EXTENSION OF A RELATIONAL DATABASE SYSTEM

    Get PDF
    Logic based knowledge processing systems such as PROLOG based expert systems have shown obvious drawbacks in performing conventional database tasks. Knowledge processing by deduction on a large set of given facts can be better performed by a deductive database system based on Horn logic and relational database theory. A concept is presented to extend an existing relational database system to make feasible the deduction of intensional data from a given extensional database. The deductive extension provides an extended view mechanism and the integration of integn\u27ly constraints and leads to an enhanced quety mechanism. Thus, the conventional database becomes more expressive, shows a higher degree of consistency, and is evaluated more efficiently

    Enabling On-Demand Database Computing with MIT SuperCloud Database Management System

    Full text link
    The MIT SuperCloud database management system allows for rapid creation and flexible execution of a variety of the latest scientific databases, including Apache Accumulo and SciDB. It is designed to permit these databases to run on a High Performance Computing Cluster (HPCC) platform as seamlessly as any other HPCC job. It ensures the seamless migration of the databases to the resources assigned by the HPCC scheduler and centralized storage of the database files when not running. It also permits snapshotting of databases to allow researchers to experiment and push the limits of the technology without concerns for data or productivity loss if the database becomes unstable.Comment: 6 pages; accepted to IEEE High Performance Extreme Computing (HPEC) conference 2015. arXiv admin note: text overlap with arXiv:1406.492

    A FRAMEWORK FOR DEDUCTIVE DATABASE DESIGN IM DECISION SUPPORT SYSTEMS

    Get PDF
    A three-level framework for design and implementation of deductive database management systems is described. The three levels consist of the abstraction, for abstracting the real world semantics, the language, for man-machine communication, and the environment, for specifying the hardware/software environment. This framework is applied to some representative systems. Based on the results, an architecture for a deductive database management system is proposed
    • …
    corecore