1,073 research outputs found

    An SIRS Epidemic Model Incorporating Media Coverage with Time Delay

    Get PDF
    An SIRS epidemic model incorporating media coverage with time delay is proposed. The positivity and boundedness are studied firstly. The locally asymptotical stability of the disease-free equilibrium and endemic equilibrium is studied in succession. And then, the conditions on which periodic orbits bifurcate are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction number R0<1. However, when R0>1, the stability of the endemic equilibrium will be affected by the time delay; there will be a family of periodic orbits bifurcating from the endemic equilibrium when the time delay increases through a critical value. Finally, some examples for numerical simulations are also included

    A stochastic SIRI epidemic model with relapse and media coverage

    Get PDF
    This work is devoted to investigate the existence and uniqueness of a global positive solution for a stochastic epidemic model with relapse and media coverage. We also study the dynamical properties of the solution around both disease-free and endemic equilibria points of the deterministic model. Furthermore, we show the existence of a stationary distribution. Numerical simulations are presented to confirm the theoretical results.Fondo Europeo de Desarrollo RegionalMinisterio de Economía y CompetitividadConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía)Faculty of Sciences (Ibn Tofail University

    Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel

    Get PDF
    In this work, we investigate a stochastic epidemic model with relapse and distributed delay. First, we prove that our model possesses and unique global positive solution. Next, by means of the Lyapunov method, we determine some sufficient criteria for the extinction of the disease and its persistence. In addition, we establish the existence of a unique stationary distribution to our model. Finally, we provide some numerical simulations for the stochastic model to assist and show the applicability and efficiency of our results.Ministerio de Ciencia, Innovación y Universidades (MICINN). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER

    Dynamics of vaccination in a time-delayed epidemic model with awareness

    Get PDF
    This paper investigates the effects of vaccination on the dynamics of infectious disease, which is spreading in a population concurrently with awareness. The model considers contributions to the overall awareness from a global information campaign, direct contacts between unaware and aware individuals, and reported cases of infection. It is assumed that there is some time delay between individuals becoming aware and modifying their behaviour. Vaccination is administered to newborns, as well as to aware individuals, and it is further assumed that vaccine-induced immunity may wane with time. Feasibility and stability of the disease-free and endemic equilibria are studied analytically, and conditions for the Hopf bifurcation of the endemic steady state are found in terms of system parameters and the time delay. Analytical results are supported by numerical continuation of the Hopf bifurcation and numerical simulations of the model to illustrate different types of dynamical behaviour

    Mathematical model for the impact of awareness on the dynamics of infectious diseases

    Get PDF
    This paper analyses an SIRS-type model for infectious diseases with account for behavioural changes associated with the simultaneous spread of awareness in the population. Two types of awareness are included into the model: private awareness associated with direct contacts between unaware and aware populations, and public information campaign. Stability analysis of different steady states in the model provides information about potential spread of disease in a population, and well as about how the disease dynamics is affected by the two types of awareness. Numerical simulations are performed to illustrate the behaviour of the system in different dynamical regimes

    Dynamics for a stochastic delayed SIRS epidemic model

    Get PDF
    In this paper, we consider a stochastic delayed SIRS epidemic model with seasonal variation. Firstly, we prove that the system is mathematically and biologically well-posed by showing the global existence, positivity and stochastically ultimate boundneness of the solution. Secondly, some sufficient conditions on the permanence and extinction of the positive solutions with probability one are presented. Thirdly, we show that the solution of the system is asymptotical around of the disease-free periodic solution and the intensity of the oscillation depends of the intensity of the noise. Lastly, the existence of stochastic nontrivial periodic solution for the system is obtained

    Advanced Nonlinear Dynamics of Population Biology and Epidemiology

    Get PDF
    abstract: Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.View the article as published at https://www.hindawi.com/journals/aaa/2014/214514

    Time-delayed SIS epidemic model with population awareness

    Get PDF
    This paper analyses the dynamics of infectious disease with a concurrent spread of disease awareness. The model includes local awareness due to contacts with aware individuals, as well as global awareness due to reported cases of infection and awareness campaigns. We investigate the effects of time delay in response of unaware individuals to available information on the epidemic dynamics by establishing conditions for the Hopf bifurcation of the endemic steady state of the model. Analytical results are supported by numerical bifurcation analysis and simulations
    • …
    corecore