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A compartment epidemic model with delay is given to discuss the impact of awareness programs on the spread and control of
infectious diseases in a given region. It is assumed that there is a constant recruitment rate in the cumulative density of awareness
programs, and further it is assumed that awareness programs can influence the susceptible to a limited extent. The system exhibits
two equilibria: the disease-free equilibrium is stable if the basic reproduction number is less than unity for any delay and the unique
endemic equilibrium exhibits Hopf-bifurcation under certain conditions. Numerical simulations prove the results of analysis and
the significance of awareness programs in preventing and controlling the diseases, by investigating the relationship between the
proportion of the infective and the dissemination rate and the implementation rate, respectively.

1. Introduction

Plenty of evidence shows that awareness programs, which
can influence the susceptible to a limited extent due to
some objective factors, play an important role in the spread
and control of infectious diseases. For example, during the
outbreak of SARS, H1N1 influenza pandemic, and HIV
epidemic, public media had massive reports on the number
of the infections and deaths per day, which had a great
impact on the diseases control [1–4]. That is due to the
fact that the spread of diseases is often accompanied by a
rise in awareness of those in the social vicinity of infected
individuals and a subsequent change in behavior, such as
keeping social distancing, wearing protective masks, and
vaccination [5, 6]. Such reactions can manifest themselves in
lower susceptibility as people try to prevent themselves from
catching the disease, but also in lower infectivity because of
self-imposed quarantine or better hygiene, shorter durations
of infectiousness, or longer immunity [7]. And once the
infective are cured, they will be aware of the disease [8].

Recently some scholars used mathematical models to
discuss the impact of awareness programs on the diseases
spreading and controlling in a given region [6, 8–11]. Joshi
et al. [9] formulated a model to investigate the effect on the
HIV epidemic in Uganda and compared their model with

three types of the susceptible to a standard SIR model and
then pointed out that the awareness programs in Uganda
are successful in combating diseases. Li and Cui [1] ana-
lyzed a SIS epidemic model incorporating media coverage
under constant and pulse vaccination; then they obtained
the exact periodic infection-free solution which is globally
asymptotically stable under some conditions. In order to
better describe populations mixed condition, some authors
studied infectious diseases models on different networks [12–
14]. In [12], the authors introduced a constant to represent the
density level ofmedia coverage fromother regions. Funk et al.
[14] formulated and analyzed a mathematical model in a host
population; then they put forward that awareness programs
can result in a lower size of the outbreak but do not affect the
epidemic threshold, and if the behavioral response is treated
as a local effect arising in the proximity of an outbreak, it can
completely stop a disease from spreading, although only if the
infection rate is below a threshold.

Some scholars consider some other factors in awareness
program models. Liu and Wang et al. took into account the
random perturbation [15, 16]. In [16], the authors extended a
deterministic SIRS epidemicmodel to a stochastic differential
equation, and then they discussed the exponential p-stability
and global stability of unique positive solution. Some scholars
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focused their attention at the contact rate, and most of them
assumed that awareness programs will aid in modifying the
contact rate between the susceptible and the infective [17–
29]. Liu and Cui [17] used the contact rate (𝛽

1
− 𝛽
2
𝐼/(𝑚 + 𝐼))

and found that both of the two equilibria are asymptotically
stable. Mirsa et al. [20] used the constant 𝑘 with the contact
rate 𝑀/(𝑘 + 𝑀) to limit the effect of awareness programs
on the susceptible and sought out the conditions that Hopf-
bifurcation occurs. Tchuenche and Bauch [23] used an
exponentially decreasing function 𝑒−𝑀(𝑡) to affect the force of
infection; then numerical results showed the potential short-
term beneficial effect of awareness programs. Pang and Cui
[26] used 𝛽(𝐼) = 𝜇

1
− 𝜇
2
𝑓(𝐼) to show the contact rate after

awareness programs alerts and found that though it is not a
determined fact to eradicate the infection of the diseases, the
effective awareness programs can postpone the arrival of the
infection peak. Elenbaas et al. [28] introduced a segmented
function to describe the media impact 𝑒−𝑚𝐼𝑐 when they
formulate an epidemic model. A Filippov epidemic model
was proposed to describe the real characteristics of media
impact on the spread of infectious diseases by incorporating
a piecewise continuous transmission rate 𝛽𝑒(−𝛼𝜖𝐼)𝑆𝐼 in [29].
Mathematical and bifurcation analyses with regard to the
local and global stability of equilibria and local sliding
bifurcations are performed.

But what we regard as unreasonable is that most of the
articles assume that the cured infective become unaware of
the disease. In fact people have a certain consciousness about
the disease once they get sick.Therefore we propose a delayed
mathematical model for predicting the future course of any
epidemic by considering some of the infect join the aware
susceptible after recovery.Wehold the opinion that awareness
programs can influence the susceptible to a limited extent
for some objective factors and then consider the interaction
between the susceptible and awareness programs as Holling
type-II functional response. In addition we make a constant
to represent the density level of media coverage from other
regions with the disease because other regions can also effect
the region that we consider. In fact the results about global
stability of other delayed systems could be further utilized for
other related problems [30–32].

The rest of this paper is organized as follows. In the
next section, a mathematical model with delay has been
proposed to capture the dynamics of the effect of awareness
programs. It is assumed that diseases spread due to the
contact between the susceptible and the infective only. Then
we analyze the conditions of the stability of equilibria and the
existence of Hopf-bifurcation in Section 3. Furthermore, in
Section 4 we perform some numerical examples to validate
the analysis in Section 3 and then introduce the importance
of the dissemination rate, implementation rate, and the delay
in disease control. In Section 5 we discuss the above contents.

2. Mathematical Model and
Equilibrium Analysis

In the region under consideration the rate of immigration of
the susceptible is 𝑏. It is assumed that the disease spreads due

to the direct contact between the susceptible and the infective
only and due to awareness programs the susceptible avoid
being in contact with the infective and form a different class
with a proportion𝜆, named the aware susceptible. So the total
population is divided into three classes: the susceptible, the
aware susceptible, and the infective, the proportions of which
at time 𝑡 in the total population are𝑋(𝑡),𝑋

𝑚
(𝑡), and𝑌(𝑡). It is

assumed that the aware susceptible may lose awareness with
passage of time and become susceptible with the proportion
of𝜆
0
again.The infective can be curedwith a proportion ] and

a fraction 𝑞 of recovered people will become aware and join
the aware susceptible class whereas the remaining fraction
𝑝(𝑝 + 𝑞 = 1) will join the susceptible.

Consider that the cumulative density of awareness pro-
grams driven by media in that region at time 𝑡 is 𝑀(𝑡),
which is related to the infective. We make the constant 𝜇
represent the executed rate of awareness programs. As the
time passes, some campaigns lose their impact on people
and lead to the diminution of the awareness programs, so we
introduce 𝜇

0
to denote the rate of their depletion. Moreover

𝑚
0
represents the density level of media coverage on the

disease from other regions. Using the fact that there is a
limited extent of the awareness programs influence on the
susceptible due to some objective factors, we introduce 𝑘 to
limit the effect and consider the interaction between them
as Holling type-II functional response. It is plausible that
the policy makers need some time to gather the cases of
the infective generally; then we introduce 𝜏 and consider
that the cumulative density of awareness programs at time 𝑡
being executed will be in accordance with the infected cases
reported at time 𝑡−𝜏 (𝜏 > 0). Keeping the above facts inmind,
the dynamics of model is governed by the following system of
nonlinear delay differential equations:

𝑋

(𝑡) = 𝑏 − 𝛽𝑋 (𝑡) 𝑌 (𝑡) + 𝜆

0
𝑋
𝑚
(𝑡)

− 𝜆𝑋 (𝑡)
𝑀 (𝑡)

1 + 𝑘𝑀 (𝑡)
+ 𝑝]𝑌 (𝑡) − 𝑑𝑋 (𝑡) ,

𝑋


𝑚
(𝑡) = 𝜆𝑋 (𝑡)

𝑀 (𝑡)

1 + 𝑘𝑀 (𝑡)

− 𝜆
0
𝑋
𝑚
(𝑡) + 𝑞]𝑌 (𝑡) − 𝑑𝑋

𝑚
(𝑡) ,

𝑌

(𝑡) = 𝛽𝑋 (𝑡) 𝑌 (𝑡) − ]𝑌 (𝑡) − 𝑑𝑌 (𝑡) ,

𝑀

(𝑡) = 𝑚

0
+ 𝜇𝑌 (𝑡 − 𝜏) − 𝜇

0
𝑀(𝑡) .

(1)

Here 𝑋(0) = 𝑋
0
> 0, 𝑋

𝑚
(0) = 𝑋

𝑚0
≥ 0, and 𝑌(𝜃) = 𝑌

0
≥ 0

for 𝜃 ∈ [−𝜏, 0] and𝑀(0) = 𝑀
0
≥ 0.

In the above model, the constants 𝛽 and 𝑑(𝑑 = 𝑏), respec-
tively, represent the contact rate of the unaware susceptible
with the infective and the natural death rate. All the constants
in the system are assumed to be positive.
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Using the fact that 𝑋(𝑡) + 𝑌(𝑡) + 𝑋
𝑚
(𝑡) = 1, 𝑝 + 𝑞 = 1

system (1) is reduced to the following system:

𝑋


𝑚
(𝑡) = 𝜆 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡))

𝑀 (𝑡)

1 + 𝑘𝑀 (𝑡)

− (𝜆
0
+ 𝑑)𝑋

𝑚
(𝑡) + 𝑞]𝑌 (𝑡) ,

𝑌

(𝑡) = 𝛽 (1 − 𝑋

𝑚
(𝑡) − 𝑌 (𝑡)) 𝑌 (𝑡) − (] + 𝑑) 𝑌 (𝑡) ,

𝑀

(𝑡) = 𝑚

0
+ 𝜇𝑌 (𝑡 − 𝜏) − 𝜇

0
𝑀(𝑡) .

(2)

Now it is sufficient to study system (2) in detail rather than
system (1).

For the analysis of system (2), we need the region of
attraction which is given by the set Ω = {(𝑋

𝑚
, 𝑌,𝑀) ∈ R3

+
:

0 ≤ 𝑋
𝑚
, 𝑌 ≤ 1, 0 ≤ 𝑀 ≤ (𝑚

0
+ 𝜇)/𝜇

0
}, and it attracts all

solutions initiating in the interior of the positive orthant.
The system (2) has two equilibria.

(i) Disease-free equilibrium𝐸
0
(𝜆𝑚
0
/(𝜆𝑚
0
+(𝜆
0
+𝑑)(𝜇

0
+

𝑘𝑚
0
)), 0, 𝑚

0
/𝜇
0
).

(ii) Endemic equilibrium 𝐸
∗
(𝑋∗
𝑚
, 𝑌∗,𝑀∗).

Define the basic reproduction number 𝑅
0
= 𝛽/(] + 𝑑).

The existence of equilibrium 𝐸
0
is trivial; then we prove the

existence of 𝐸
∗
in detail. When 𝑅

0
> 1, in the equilibrium 𝐸

∗

the values of𝑋∗
𝑚
,𝑀∗ are

𝑋
∗

𝑚
= 1 −

] + 𝑑
𝛽

− 𝑌
∗
,

𝑀
∗
=
𝑚
0

𝑢
0

+
𝜇

𝜇
0

𝑌
∗
,

(3)

with 𝑌∗ satisfying the equation

𝐴
1
𝑌
∗2
+ 𝐴
2
𝑌
∗
+ 𝐴
3
= 0, (4)

where

𝐴
1
= 𝜇𝑘𝛽 (𝜆

0
+ 𝑑 + 𝑞]) ,

𝐴
2
= 𝜇𝑘 (𝜆

0
+ 𝑑) (] + 𝑑 − 𝛽) + 𝜆𝜇 (] + 𝑑)

+ 𝛽 (𝜆
0
+ 𝑑 + 𝑞]) (𝜇

0
+ 𝑘𝑚
0
) ,

𝐴
3
= 𝜆𝑚
0
(] + 𝑑) + (𝜆

0
+ 𝑑) (] + 𝑑 − 𝛽) (𝜇

0
+ 𝑘𝑚
0
) .

(5)

Solving (4) we get

𝑌
∗
=
−𝐴
2
± √𝐴2

2
− 4𝐴
1
𝐴
3

2𝐴
1

. (6)

We obtain 𝐴
1
> 0, and when 𝛽𝜆 < 𝑘(𝜆

0
+ 𝑑)(𝛽 − ] − 𝑑),

𝐴
3
= 𝜆𝑚
0
(] + 𝑑) + (𝜆

0
+ 𝑑) (] + 𝑑 − 𝛽) (𝜇

0
+ 𝑘𝑚
0
)

= 𝛽𝜆𝑚
0
(
1

𝑅
0

− 1) + 𝛽𝜆𝑚
0

+ 𝛽 (𝜆
0
+ 𝑑) (𝜇

0
+ 𝑘𝑚
0
) (

1

𝑅
0

− 1)

= 𝛽𝜆𝑚
0
(
1

𝑅
0

− 1) + 𝛽𝜇
0
(𝜆
0
+ 𝑑) (

1

𝑅
0

− 1)

+ 𝛽𝑚
0
[𝜆 − 𝑘 (𝜆

0
+ 𝑑) (1 −

1

𝑅
0

)] < 0,

(7)

then we get 𝑌∗ = (−𝐴
2
+ √𝐴2

2
− 4𝐴
1
𝐴
3
)/2𝐴
1
for 𝑌∗ > 0.

Remark 1. From the expression of 𝑌∗, it is easy to note that
𝑑𝑌∗/𝑑𝜆 < 0 and 𝑑𝑌∗/𝑑𝜇 < 0, which shows that the
equilibrium proportion of the infective decreases as the rate
of dissemination of awareness among the susceptible and the
implementation rate of awareness programs increases.

3. Stability Analysis

In this section we present the local stability of 𝐸
0
, 𝐸
∗
and

explore the conditions of Hopf-bifurcation by taking delay 𝜏
as a bifurcation parameter.

3.1. Stability of Equilibria without Delay (𝜏 = 0)

Theorem 2. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable if 𝑅
0
< 1.

Proof. The Jacobian matrix corresponding to the system (2)
when 𝜏 = 0 is given below:

𝐽 =

[
[
[
[

[

−
𝜆𝑀

1 + 𝑘𝑀
− 𝜆
0
− 𝑑 −

𝜆𝑀

1 + 𝑘𝑀
+ ]𝑞 𝜆 (1 − 𝑌 − 𝑋

𝑚
)

1

(1 + 𝑘𝑀)
2

−𝛽𝑌 𝛽 (1 − 𝑋
𝑚
) − (] + 𝑑) − 2𝛽𝑌 0

0 𝜇 −𝜇
0

]
]
]
]

]

. (8)
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The characteristic equation at 𝐸
0
is of the form

(𝜂 + 𝜇
0
) [𝜂 +

𝜆𝑚
0

𝑘𝑚
0
+ 𝜇
0

+ 𝜆
0
+ 𝑑]

× [𝜂 +
𝛽𝜆𝑚
0

𝜆𝑚
0
+ (𝜆
0
+ 𝑑) (𝜇

0
+ 𝑘𝑚
0
)

+𝛽(
1

𝑅
0

− 1)] = 0,

(9)

where 𝜂 is the eigenvalue. We get

𝜂
1
= −𝜇
0
< 0,

𝜂
2
= −(

𝜆𝑚
0

𝑘𝑚
0
+ 𝜇
0

+ 𝜆
0
+ 𝑑) < 0,

𝜂
3
= −𝛽[

𝜆𝑚
0

𝜆𝑚
0
+ (𝜆
0
+ 𝑑) (𝜇

0
+ 𝑘𝑚
0
)
+ (

1

𝑅
0

− 1)] ,

(10)

so 𝜂
3
< 0when𝑅

0
< 1.Thus𝐸

0
is locally asymptotically stable

if 𝑅
0
< 1.

The form of characteristic equation at 𝐸
∗
is

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + (𝑄

3
+ 𝑄
4
) = 0, (11)

where

𝑄
1
= 𝐵
1
+ 𝐵
3
+ 𝜇
0
,

𝑄
2
= 𝜇
0
(𝐵
1
+ 𝐵
3
) + 𝐵
1
𝐵
3
− 𝛽𝑌
∗
𝐵
2
,

𝑄
3
= 𝜇
0
𝐵
1
𝐵
3
− 𝛽𝜇
0
𝑌
∗
𝐵
2
,

𝑄
4
= −𝛽𝜇𝑌

∗
𝐵
4
,

𝐵
1
= 𝜆𝑀

∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑,

𝐵
2
= 𝜆𝑀

∗ 1

1 + 𝑘𝑀∗
− ]𝑞,

𝐵
3
= 𝛽 (𝑋

∗

𝑚
− 1) + 2𝛽𝑌

∗
+ (] + 𝑑) ,

𝐵
4
= 𝜆 (𝑋

∗

𝑚
+ 𝑌
∗
− 1)

1

(1 + 𝑘𝑀∗)
2
.

(12)

Theorem 3. When the endemic equilibrium 𝐸
∗
exists, it is

locally asymptotically stable provided𝑚
0
(𝜆
0
+ 𝑑 + 𝑞]) > 𝜇𝜇

0
.

Proof. For the characteristic equation

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + (𝑄

3
+ 𝑄
4
) = 0, (13)

it is easy to show

𝑄
1
= 𝜆𝑀

∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑

+ 𝛽 (𝑋
∗

𝑚
− 1) + 2𝛽𝑌

∗
+ (] + 𝑑) + 𝜇

0

= 𝜆𝑀
∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑 + 𝛽 (𝑋

∗

𝑚
− 1)

+ 2𝛽𝑌
∗
+ 𝛽 (1 − 𝑋

∗

𝑚
− 𝑌
∗
) + 𝜇
0

= 𝜆𝑀
∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑 + 𝛽𝑌

∗
+ 𝜇
0
> 0,

𝑄
2
= 𝜇
0
(𝐵
1
+ 𝐵
3
) + (𝜆𝑀

∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑)

× [𝛽 (𝑋
∗

𝑚
− 1) + 2𝛽𝑌

∗
+ (] + 𝑑)]

− 𝛽𝑌
∗
(𝜆𝑀
∗ 1

1 + 𝑘𝑀∗
− ]𝑞)

= 𝜇
0
(𝐵
1
+ 𝐵
3
) + 𝛽𝑌

∗
(

𝜆𝑀∗

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑)

− 𝛽𝑌
∗
(

𝜆𝑀∗

1 + 𝑘𝑀∗
− ]𝑞)

= 𝜇
0
(𝐵
1
+ 𝐵
3
) + (𝜆

0
+ ]𝑞 + 𝑑) 𝛽𝑌∗ > 0,

𝑄
3
+ 𝑄
4
= 𝜇
0
𝐵
1
𝐵
3
− 𝛽𝑌
∗
(𝜇𝐵
4
+ 𝜇
0
𝐵
2
)

= 𝜇
0
𝛽𝑌
∗
(𝜆𝑀
∗ 1

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑)

− 𝛽𝑌
∗
[𝜇𝜆 (𝑋

∗

𝑚
+ 𝑌
∗
− 1)

1

(1 + 𝑘𝑀∗)
2

+ 𝜇
0
(𝜆𝑀
∗ 1

1 + 𝑘𝑀∗
− ]𝑞)]

= 𝛽𝑌
∗
𝜇𝜆 (1 − 𝑋

∗

𝑚
− 𝑌
∗
)

1

(1 + 𝑘𝑀∗)
2

+ 𝜇
0
𝛽𝑌
∗
(𝜆
0
+ 𝑑) + ]𝑞𝜇

0
𝛽𝑌
∗
> 0.

(14)

And

𝑄
1
𝑄
2
− (𝑄
3
+ 𝑄
4
)

= (𝐵
1
+ 𝐵
3
) (𝜇
0
𝐵
1
+ 𝜇
0
𝐵
3
+ 𝐵
1
𝐵
3
− 𝛽𝑌
∗
𝐵
2
)

+ 𝜇
2

0
(𝐵
1
+ 𝐵
3
) − 𝑄
4
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= 𝜇
0
(𝐵
1
+ 𝐵
3
)
2

+ 𝜇
2

0
(𝐵
1
+ 𝐵
3
)

+ 𝐵
3
[(𝐵
1
+ 𝐵
3
) (𝐵
1
− 𝐵
2
) + 𝜇𝐵

4
] ,

(15)

where

(𝐵
1
+ 𝐵
3
) (𝐵
1
− 𝐵
2
) + 𝜇𝐵

4

= (
𝜆𝑀∗

1 + 𝑘𝑀∗
+ 𝜆
0
+ 𝑑 + 𝛽𝑌

∗
) (𝜆
0
+ 𝑑 + 𝑞])

− 𝜇𝜆 (1 − 𝑋
∗

𝑚
− 𝑌
∗
)

1

(1 + 𝑘𝑀∗)
2

=
𝜆

1 + 𝑘𝑀∗
[𝑀
∗
(𝜆
0
+ 𝑑 + 𝑞]) −

𝜇

1 + 𝑘𝑀∗
]

+ (𝜆
0
+ 𝑑 + 𝛽𝑌

∗
) (𝜆
0
+ 𝑑 + 𝑞]) +

𝜇𝜆 (𝑋∗
𝑚
+ 𝑌∗)

1 + 𝑘𝑀∗

=
𝜆

(1 + 𝑘𝑀∗)
2
[𝑀
∗
(𝜆
0
+ 𝑑 + 𝑞]) + 𝑘(𝑀∗)2

× (𝜆
0
+ 𝑑 + 𝑞]) − 𝜇]

+ (𝜆
0
+ 𝑑 + 𝛽𝑌

∗
) (𝜆
0
+ 𝑑 + 𝑞])

+ 𝜇𝜆 (𝑋
∗

𝑚
+ 𝑌
∗
)

1

1 + 𝑘𝑀∗

=
𝜆

(1 + 𝑘𝑀∗)
2
[
𝑚
0
(𝜆
0
+ 𝑑 + 𝑞])
𝜇
0

+
𝜇𝑌∗ (𝜆

0
+ 𝑑 + 𝑞])
𝜇
0

+𝑘𝑀
∗2
(𝜆
0
+ 𝑑 + 𝑞]) − 𝜇]

+ (𝜆
0
+ 𝑑 + 𝛽𝑌

∗
) (𝜆
0
+ 𝑑 + 𝑞])

+ 𝜇𝜆 (𝑋
∗

𝑚
+ 𝑌
∗
)

1

1 + 𝑘𝑀∗
> 0,

(16)

so 𝑄
1
𝑄
2
− (𝑄
3
+ 𝑄
4
) > 0. According to Hurwitz criterion,

we can claim that all the eigenvalues will be either negative or
having negative real part. Thus, the equilibrium 𝐸

∗
is locally

asymptotically stable.

3.2. Stability of Equilibria with Delay (𝜏 > 0)

Theorem 4. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable if 𝑅
0
< 1.

Similar to the proof of Theorem 2, this proof is omitted.
We linearize system (2) about 𝐸

∗
to study the stability of

the endemic equilibrium and get

𝑑𝑢

𝑑𝑡
= 𝑀
1
𝑢 (𝑡) + 𝑀

2
𝑢 (𝑡 − 𝜏) , (17)

where

𝑢 (𝑡) = [𝑥 (𝑡) 𝑦 (𝑡) 𝑧 (𝑡)]
𝑇

,

𝑀
1
=
[
[
[

[

−
𝜆𝑀
∗

1 + 𝑘𝑀∗
− 𝜆
0
− 𝑑 −

𝜆𝑀∗

1 + 𝑘𝑀∗
+ ]𝑞 𝜆 (1 − 𝑌∗ − 𝑋∗

𝑚
)

1

(1 + 𝑘𝑀∗)
2

−𝛽𝑌∗ 𝛽 (1 − 𝑋∗
𝑚
) − (] + 𝑑) − 2𝛽𝑌∗ 0

0 0 −𝜇
0

]
]
]

]

,

𝑀
2
= [

[

0 0 0

0 0 0

0 𝜇 0

]

]

.

(18)

In the above, 𝑥, 𝑦, and 𝑧 are small perturbations around 𝐸
∗
.

Then the form of the characteristic equation of the system
is

𝜂
3
+ 𝑄
1
𝜂
2
+ 𝑄
2
𝜂 + 𝑄

3
= 𝑄
4
𝑒
−𝜂𝜏
, (19)

where 𝜂 is the eigenvalue.
To show the Hopf-bifurcation, we need to show that (19)

has a pair of purely imaginary roots. For this, substituting

𝜂 = 𝑖𝜔 (𝜔 > 0) into (19) and separating real and imaginary
parts, we get the following transcendental equations:

𝑄
2
𝜔 − 𝜔

3
= 𝑄
4
sin (𝜔𝜏) ,

𝑄
1
𝜔
2
− 𝑄
3
= 𝑄
4
cos (𝜔𝜏) .

(20)

Squaring and adding the above equations and substituting
𝜓 = 𝜔2, we get

ℎ (𝜓) = 𝜓
3
+ 𝑃
1
𝜓
2
+ 𝑃
2
𝜓 + 𝑃
3
= 0, (21)

where 𝑃
1
= 𝑄2
1
− 2𝑄
2
, 𝑃
2
= 𝑄2
2
− 2𝑄
1
𝑄
3
, and 𝑃

3
= 𝑄2
3
− 𝑄2
4
.
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If the coefficients in ℎ(𝜓) satisfy the conditions of Routh-
Hurwitz criterion, then 𝐸

∗
is locally asymptotically stable for

all delays 𝜏 > 0, provided it is stable in absence of delay. In
the following we consider that the values of 𝑃

𝑖
(𝑖 = 1, 2, 3, 4)

do not satisfy the Routh-Hurwitz criterion.

Lemma 5. If 𝐵
2
> 0, 𝜆

0
+𝑑+𝑞] < 𝜇𝜆(]+𝑑)(1/𝛽(1+𝑘𝑀∗)2),

(21) will have at least one positive root 𝜓
0
.

Proof. For ℎ(𝜓) = 𝜓3 + 𝑃
1
𝜓2 + 𝑃

2
𝜓 + 𝑃
3
, it is obvious that

𝑃
1
= (𝐵
1
+ 𝐵
3
+ 𝜇
0
)
2

− 2 [(𝐵
1
+ 𝐵
3
) 𝜇
0
+ 𝐵
1
𝐵
3
− 𝛽𝐵
2
𝑌
∗
]

= 𝐵
2

1
+ 𝐵
2

3
+ 𝜇
2

0
+ 2𝛽𝐵

2
𝑌
∗
> 0,

𝑃
2
= [(𝐵
1
+ 𝐵
3
) 𝜇
0
+ 𝐵
1
𝐵
3
− 𝛽𝐵
2
𝑌
∗
]
2

− 2 (𝐵
1
+ 𝐵
3
+ 𝜇
0
) (𝐵
1
𝐵
3
𝜇
0
− 𝜇
0
𝛽𝐵
2
𝑌
∗
)

= 𝐵
2

1
𝜇
2

0
+ 𝐵
2

3
𝜇
2

0
+ (𝐵
1
𝐵
3
)
2

+ (𝐵
2
𝐵
3
)
2

− 2𝐵
1
𝐵
2
𝐵
2

3
+ 2𝐵
2
𝐵
3
𝜇
2

0

= (𝐵
2

1
+ 𝐵
2

3
) 𝜇
2

0
+ (𝐵
1
𝐵
3
− 𝐵
2
𝐵
3
)
2

+ 2𝜇
2

0
𝐵
2
𝐵
3
> 0,

𝑃
3
= (𝑄
3
+ 𝑄
4
) (𝑄
3
− 𝑄
4
)

= 𝐵
3
(𝜇
0
𝐵
1
− 𝜇
0
𝐵
2
+ 𝜇𝐵
4
) (𝑄
3
+ 𝑄
4
)

= 𝐵
3
(𝑄
3
+ 𝑄
4
)

× [𝜇
0
(𝜆
0
+ 𝑑 + 𝑞])

− 𝜇𝜆 (1 − 𝑋
∗

𝑚
− 𝑌
∗
)

1

(1 + 𝑘𝑀∗)
2
]

< 𝐵
3
(𝑄
3
+ 𝑄
4
) [ (𝜆

0
+ 𝑑 + 𝑞])

− 𝜇𝜆 (] + 𝑑)
1

𝛽(1 + 𝑘𝑀∗)
2
] < 0.

(22)

Then we have ℎ(0) < 0 and ℎ(+∞) → +∞; thus (21) has at
least one positive root 𝜓

0
.

Denote𝜔
0
= √𝜓0; then (21) has a pair of purely imaginary

roots (±𝑖𝜔
0
).

Now we turn to the bifurcation analysis. We use the delay
𝜏 as the bifurcation parameter. We view the solutions of (21)
as a function of the bifurcation parameter 𝜏, and let 𝜂(𝜏) =
𝛾(𝜏) + 𝑖𝜔(𝜏) be the eigenvalue of (21) such that, for the initial
value of the bifurcation parameter 𝜏

0
, we have 𝛾(𝜏

0
) = 0 and

𝜔(𝜏
0
) = 𝜔

0
(𝜔
0
> 0). To establish the Hopf bifurcation at

𝜏 = 𝜏
0
, we need to show that 𝑑Re 𝜂(𝜏)/𝑑𝜏|

𝜏=𝜏
0

> 0.

Lemma 6. One has the following transversality condition:

𝑑Re 𝜂 (𝜏)
𝑑𝜏

𝜏 = 𝜏
0

> 0. (23)

Proof. Differentiating with respect to 𝜏 from (21), we get

(
𝑑𝜂

𝑑𝜏
)

−1

=
𝑑𝜏

𝑑𝜂
=
3𝜂2 + 2𝑄

1
𝜂 + 𝑄

2
− 𝑄
4
𝜏𝑒−𝜂𝜏

𝑄
4
𝜂𝑒−𝜂𝜏

. (24)

So

Sign{Re
𝑑 (𝜂)

𝑑 (𝜏)
}
𝜏 = 𝜏
0

= Sign{Re 𝑑 (𝜏)
𝑑 (𝜂)

}
𝜂 = 𝑖𝜔

0

= Sign{Re[
3𝜂2 + 2𝑄

1
𝜂 + 𝑄

2
− 𝑄
4
𝜏𝑒−𝜂𝜏

𝑄
4
𝜂𝑒−𝜂𝜏

]
𝜂 = 𝑖𝜔

0

}

= Sign{Re[
3𝜂2 + 2𝑄

1
𝜂 + 𝑄

2

𝑄
4
𝜂𝑒−𝜂𝜏

]
𝜂 = 𝑖𝜔

0

− Re [𝜏
𝜂
]
𝜂 = 𝑖𝜔

0

}

= Sign{Re[−
3𝜂2 + 2𝑄

1
𝜂 + 𝑄

2

𝜂4 + 𝑄
1
𝜂3 + 𝑄

2
𝜂2 + 𝑄

3
𝜂
]
𝜂 = 𝑖𝜔

0

}

= Sign{Re[−
(𝑄
2
− 3𝜔2
0
) + 2𝑄

1
𝜔
0
𝑖

(𝜔4
0
− 𝑄
2
𝜔2
0
) + (𝑄

3
𝜔
0
− 𝑄
1
𝜔3
0
) 𝑖
]}

= Sign{
𝜔2
0
[3𝜔4
0
+ (2𝑄2

1
− 4𝑄
2
) 𝜔2
0
+ (𝑄2
2
− 2𝑄
1
𝑄
3
)]

𝑄2
4
𝜔4
0

}

= Sign{
3𝜔
4

0
+ 2𝑃
1
𝜔2
0
+ 𝑃
2

𝑄2
4

} > 0.

(25)

This proves the lemma. Now we have the following theorem.

Theorem 7. The endemic equilibrium 𝐸
∗
of the system is

locally asymptotically stable when 𝜏 < 𝜏
0
and becomes unstable

for 𝜏 > 𝜏
0
provided

𝜇𝜇
0

𝑚
0

< 𝜆
0
+ 𝑑 + 𝑞] < min{ 𝜆𝑀∗

1 + 𝑘𝑀∗
,
𝜇𝜆 (] + 𝑑)
𝛽(1 + 𝑘𝑀∗)

2
} .

(26)

When 𝜏 = 𝜏
0
, a Hopf-bifurcation occurs, leading a family of

periodic solutions bifurcating from 𝐸
∗
as 𝜏 passes through the

critical value 𝜏
0
, where

𝜏
0
=

1

𝜔
0

arc cos
𝑄
1
𝜔2
0
− 𝑄
3

𝑄
4

. (27)
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Figure 1: Schematic model flow diagram.
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Figure 2: The stability of the disease-free equilibrium 𝐸
0
with 𝜏 = 10.

4. Numerical Simulations and Results

To check the feasibility of our analysis in Section 3 about
𝐸
0
, we present some numerical computations in this section

using MatLab by choosing the following set of parameter
values: 𝑑 = 0.002, 𝛽 = 0.4, 𝜇

0
= 0.08, 𝜇 = 0.2, ] = 0.46,

𝑞 = 0.6, 𝜆 = 0.2, 𝜆
0
= 0.4, 𝑚

0
= 0.04, 𝑘 = 0.5, and 𝜏 = 10

(see Figure 1), and then we get Figure 2 with different initial
values, from which we can know that 𝐸

0
is stable and all the

trajectories approach it. The numerical simulations support
the analysis given.

Then we choose the following set of parameter values
which satisfy the condition in Theorem 7: 𝑑 = 0.00004, 𝛽 =

0.3, 𝜇
0
= 0.14, 𝜇 = 0.35, ] = 0.2, 𝑞 = 0.15, 𝜆 = 0.019,

𝜆
0
= 0.001, 𝑚

0
= 0.000005, and 𝑘 = 0.0003. The numerical

value of 𝜏
0
computed is found to be 30.12.When 𝜏 > 0, we give

different 𝜏 as follows: 𝜏 = 20, 𝜏 = 25, 𝜏 = 35, and 𝜏 = 40

(Figures 3 and 4). As shown in Figures 3 and 4 the variables
approach their equilibria when 𝜏 is less than 𝜏

0
, whereas,

as 𝜏 exceeds its critical value 𝜏
0
, all variables start showing

oscillatory behavior. This indicates that, in the latter case,
sometimes the infective will be high and sometimes will be
low and it may be difficult to make the prediction regarding

the size of epidemic. It is clear that 𝜏 plays a key role in the
prevention and control of diseases.

In the following we let 𝜏 = 10 and make 𝜆, 𝜇 change from
0.05 to 0.8 and research the influence of the dissemination
rate 𝜆 and the implementation rate 𝜇 on the infective 𝑌(𝑡)
separately. The variation of 𝑌(𝑡) with respect to time 𝑡 for
different values of 𝜆 and 𝜇 is shown in Figure 5, and we
discover all of the proportions of 𝑌∗ reductions as 𝜆 and 𝜇
increase, which proves the conclusions of the remark, but 𝜆
has greater influence on 𝑌(𝑡) than 𝜇. In addition the reason
why 𝑌(𝑡) has a similar trend in Figure 5 is that 𝜆 and 𝜇 have a
similar trend with𝑀(𝑡). There really is an effort here to make
clear that 𝜆 and 𝜇 play a key role in the prevention and control
of diseases.

A comparison between the oscillations in 𝑌 and 𝑀 is
presented in Figure 6. From this figure, we obtain that, as the
infective increase, the awareness programs also start growing
with some time lag due to time delay in the execution of
awareness programs. As soon as the awareness programs
reach a potentially high value, the infective start decreasing
due to the execution of awareness programs in the infective.
Awareness programs after certain time also start decreasing,
which eventually results in the increase of the infective. Both
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Figure 3: The stability of the endemic equilibria 𝐸
∗
with 𝜏 = 20 and 𝜏 = 40, respectively.
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Figure 6: Comparison between variations of 𝑌 and𝑀 with time.

of the figures show the interplay between 𝑌 and 𝑀, which
proves the existence of delay.

5. Discussion

In this paper, a nonlinear mathematical model with delay
and awareness programs driven by media has been proposed
and analyzed. It is assumed that pathogens are transmitted
via direct contact between the susceptible and the infective.
The model exhibits two equilibria, and the disease-free equi-
librium has been shown to be stable for basic reproduction
number 𝑅

0
< 1 when 𝜏 ≥ 0. For 𝑅

0
> 1, it leads to

the existence and stability of an endemic equilibrium under
some conditions in absence of time delay. But for 𝜏 > 0

this equilibrium is locally asymptotically stable when the
delay is suitably small; that is, 𝜏 < 𝜏

0
, while a loss of

stability by a Hopf-bifurcation can occur as delay increases.
Numerical simulations prove the stability of equilibria and
show that the value of delay sustainable for the disease is 30.12.
The numerical results suggest that if we want to reduce the
proportion of the infective, we can increase the dissemination
rate 𝜆 and implementation rate 𝜇. At last we obtain the
existence of 𝜏 from Figure 6. In short media is a key tool
for influencing people behavior towards the disease to devise
proper policies for controlling the epidemic.
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