186 research outputs found

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Mobility management architecture and modeling for label switched networks (mobility label based network) : a thesis

    Get PDF
    With the proliferation of IP based mobile applications network layer mobility management is expected to play an increasingly significant role in the architectures of the mobile networks. The mobile network evolution offers higher data rates and lower latencies that target mobile-to-mobile traffic patterns and applications that are all based on IP. However, the underlying network layer mobility management schemes employed in the 3G and 4G architectures are not optimized for mobile-to-mobile traffic patterns and result in the user- as well as the network-facing performance penalties that may be considered as inhibiting factors in the network evolution.We present a Mobility Label Based Network (MLBN) - a new approach to the network layer mobility management that relies on Multi-Protocol Label Switching (MPLS) and provides native integration between the MPLS-aware control and the MPLS-based forwarding planes. MLBN is a scalable, survivable hierarchical mobility management system capable of providing macro- and micro-mobility for IPv4 or IPv6 mobile hosts or routers without the use of Mobile IP while guaranteeing optimal traffic routing between the communicating mobile devices. MLBN uses MPLS to decouple the IP address assigned to a mobile node or a prefix served by a mobile router from the logical topology of the IP network thus resolving a topological conflict associated with the move of a mobile node from a home to a foreign IP network.When a user connects to the MLBN the mobile device is associated with a Mobility Label while maintaining the original IP address. The Mobility Label is then bound to the device’s IP address at the edge of the MLBN and this binding is advertised using the MPLS-aware control plane protocol into the label switched network. We show that it is possible to effectively update the network following the mobile node movements and perform optimal packet routing based on the modifiable sequence of the Label Switched Paths.Ph.D., Electrical Engineering -- Drexel University, 201

    MOON: a New Overlay Network Architecture for Mobility and QoS Support

    Get PDF
    The continuously increasing diffusion of mobile devices such as laptops, PDAs and smartphones, all equipped with enhanced functionalities, has led to numerous studies about mobility and to the definition of new network architectures capable to support it. Problems related to mobility have been addressed mostly operating on the network or transport layers of the Internet protocol stack. As a result, most of these solutions generally require modifying the TCP and/or the IP protocol. Although this approach is well suited to handle mobility, it lacks in compatibility with the Internet Protocol Suite. This consideration led us to study a fully TCP compatible and flexible approach we dubbed MOON, for MObile Overlay Network. This network architecture is currently under design at LIPAR, the Internet, Protocols and Network Architecture Lab of Politecnico di Torino

    The Case for an Adaptive Integration Framework for Data Aggregation/Dissemination in Service-Oriented Architectures

    Get PDF
    Abstract The migration to Service Oriented Architectures (SOA
    • …
    corecore