10,340 research outputs found

    Likelihood-Free Parallel Tempering

    Full text link
    Approximate Bayesian Computational (ABC) methods (or likelihood-free methods) have appeared in the past fifteen years as useful methods to perform Bayesian analyses when the likelihood is analytically or computationally intractable. Several ABC methods have been proposed: Monte Carlo Markov Chains (MCMC) methods have been developped by Marjoramet al. (2003) and by Bortotet al. (2007) for instance, and sequential methods have been proposed among others by Sissonet al. (2007), Beaumont et al. (2009) and Del Moral et al. (2009). Until now, while ABC-MCMC methods remain the reference, sequential ABC methods have appeared to outperforms them (see for example McKinley et al. (2009) or Sisson et al. (2007)). In this paper a new algorithm combining population-based MCMC methods with ABC requirements is proposed, using an analogy with the Parallel Tempering algorithm (Geyer, 1991). Performances are compared with existing ABC algorithms on simulations and on a real example

    Computation of Gaussian orthant probabilities in high dimension

    Full text link
    We study the computation of Gaussian orthant probabilities, i.e. the probability that a Gaussian falls inside a quadrant. The Geweke-Hajivassiliou-Keane (GHK) algorithm [Genz, 1992; Geweke, 1991; Hajivassiliou et al., 1996; Keane, 1993], is currently used for integrals of dimension greater than 10. In this paper we show that for Markovian covariances GHK can be interpreted as the estimator of the normalizing constant of a state space model using sequential importance sampling (SIS). We show for an AR(1) the variance of the GHK, properly normalized, diverges exponentially fast with the dimension. As an improvement we propose using a particle filter (PF). We then generalize this idea to arbitrary covariance matrices using Sequential Monte Carlo (SMC) with properly tailored MCMC moves. We show empirically that this can lead to drastic improvements on currently used algorithms. We also extend the framework to orthants of mixture of Gaussians (Student, Cauchy etc.), and to the simulation of truncated Gaussians
    • …
    corecore