3 research outputs found

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    Self-Specifying Machines

    Full text link
    We study the computational power of machines that specify their own acceptance types, and show that they accept exactly the languages that \manyonesharp-reduce to NP sets. A natural variant accepts exactly the languages that \manyonesharp-reduce to P sets. We show that these two classes coincide if and only if \psone = \psnnoplusbigohone, where the latter class denotes the sets acceptable via at most one question to \sharpp followed by at most a constant number of questions to \np.Comment: 15 pages, to appear in IJFC

    Complexity of certificates, heuristics, and counting types , with applications to cryptography and circuit theory

    Get PDF
    In dieser Habilitationsschrift werden Struktur und Eigenschaften von Komplexitätsklassen wie P und NP untersucht, vor allem im Hinblick auf: Zertifikatkomplexität, Einwegfunktionen, Heuristiken gegen NP-Vollständigkeit und Zählkomplexität. Zum letzten Punkt werden speziell untersucht: (a) die Komplexität von Zähleigenschaften von Schaltkreisen, (b) Separationen von Zählklassen mit Immunität und (c) die Komplexität des Zählens der Lösungen von ,,tally`` NP-Problemen
    corecore