32 research outputs found

    An Optimal Lower Bound on the Communication Complexity of Gap-Hamming-Distance

    Get PDF
    We prove an optimal Ω(n)\Omega(n) lower bound on the randomized communication complexity of the much-studied Gap-Hamming-Distance problem. As a consequence, we obtain essentially optimal multi-pass space lower bounds in the data stream model for a number of fundamental problems, including the estimation of frequency moments. The Gap-Hamming-Distance problem is a communication problem, wherein Alice and Bob receive nn-bit strings xx and yy, respectively. They are promised that the Hamming distance between xx and yy is either at least n/2+nn/2+\sqrt{n} or at most n/2nn/2-\sqrt{n}, and their goal is to decide which of these is the case. Since the formal presentation of the problem by Indyk and Woodruff (FOCS, 2003), it had been conjectured that the naive protocol, which uses nn bits of communication, is asymptotically optimal. The conjecture was shown to be true in several special cases, e.g., when the communication is deterministic, or when the number of rounds of communication is limited. The proof of our aforementioned result, which settles this conjecture fully, is based on a new geometric statement regarding correlations in Gaussian space, related to a result of C. Borell (1985). To prove this geometric statement, we show that random projections of not-too-small sets in Gaussian space are close to a mixture of translated normal variables

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Approximating Approximate Pattern Matching

    Full text link
    Given a text TT of length nn and a pattern PP of length mm, the approximate pattern matching problem asks for computation of a particular \emph{distance} function between PP and every mm-substring of TT. We consider a (1±ε)(1\pm\varepsilon) multiplicative approximation variant of this problem, for p\ell_p distance function. In this paper, we describe two (1+ε)(1+\varepsilon)-approximate algorithms with a runtime of O~(nε)\widetilde{O}(\frac{n}{\varepsilon}) for all (constant) non-negative values of pp. For constant p1p \ge 1 we show a deterministic (1+ε)(1+\varepsilon)-approximation algorithm. Previously, such run time was known only for the case of 1\ell_1 distance, by Gawrychowski and Uzna\'nski [ICALP 2018] and only with a randomized algorithm. For constant 0p10 \le p \le 1 we show a randomized algorithm for the p\ell_p, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of p=0p=0) and of Gawrychowski and Uzna\'nski for 1\ell_1 distance

    Quantum and Classical Communication Complexity of Permutation-Invariant Functions

    Full text link
    This paper gives a nearly tight characterization of the quantum communication complexity of the permutation-invariant Boolean functions. With such a characterization, we show that the quantum and randomized communication complexity of the permutation-invariant Boolean functions are quadratically equivalent (up to a logarithmic factor). Our results extend a recent line of research regarding query complexity \cite{AA14, Cha19, BCG+20} to communication complexity, showing symmetry prevents exponential quantum speedups. Furthermore, we show the Log-rank Conjecture holds for any non-trivial total permutation-invariant Boolean function. Moreover, we establish a relationship between the quantum/classical communication complexity and the approximate rank of permutation-invariant Boolean functions. This implies the correctness of the Log-approximate-rank Conjecture for permutation-invariant Boolean functions in both randomized and quantum settings (up to a logarithmic factor).Comment: accepted in STACS 202

    A concentration inequality for the overlap of a vector on a large set, with application to the communication complexity of the Gap-Hamming-Distance problem

    Get PDF
    Given two sets A, B ⊆ R_n, a measure of their correlation is given by the expected squared inner product between random x ϵ A and y ϵ B. We prove an inequality showing that no two sets of large enough Gaussian measure (at least e^(-δn) for some constant δ > 0) can have correlation substantially lower than would two random sets of the same size. Our proof is based on a concentration inequality for the overlap of a random Gaussian vector on a large set. As an application, we show how our result can be combined with the partition bound of Jain and Klauck to give a simpler proof of a recent linear lower bound on the randomized communication complexity of the Gap-Hamming-Distance problem due to Chakrabarti and Regev

    The quantum complexity of approximating the frequency moments

    Get PDF
    The kk'th frequency moment of a sequence of integers is defined as Fk=jnjkF_k = \sum_j n_j^k, where njn_j is the number of times that jj occurs in the sequence. Here we study the quantum complexity of approximately computing the frequency moments in two settings. In the query complexity setting, we wish to minimise the number of queries to the input used to approximate FkF_k up to relative error ϵ\epsilon. We give quantum algorithms which outperform the best possible classical algorithms up to quadratically. In the multiple-pass streaming setting, we see the elements of the input one at a time, and seek to minimise the amount of storage space, or passes over the data, used to approximate FkF_k. We describe quantum algorithms for F0F_0, F2F_2 and FF_\infty in this model which substantially outperform the best possible classical algorithms in certain parameter regimes.Comment: 22 pages; v3: essentially published versio
    corecore