3 research outputs found

    Programming and real-time control of a double-Delta parallel robotic mechanism with integrated surgical tool

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Συστήματα Αυτοματισμού

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ”flock” whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications

    An Optimal Geometric Model for Clavels Delta Robot

    No full text
    This paper discusses the Clavel’s Delta parallel robot and proposes an alternate solution to its kinemat- ics/dynamic model. We meant to integrate these models into on a small electrical driving circuit that integrates an onboard mi- crocontroller. We designed the solution by taking into account the reduced computing capability of small embedded systems. Direct kinematics (DK), differential kinematics, both direct (J) and inverse (invJ), and a simplified dynamic model will also be presented. The novelty of the approach relies in a series of geometric properties that allow to reduce the computational load. When the three kinematics are computed together (DK, J, invJ), their computations can be expressed in few lines of code. The accuracy of motion, as well as the reduced computing power, will be compared to classic algorithms . The proposed algorithms have been implemented in a working system in the context of a telemedicine project
    corecore