164 research outputs found

    Matroid Bandits: Fast Combinatorial Optimization with Learning

    Full text link
    A matroid is a notion of independence in combinatorial optimization which is closely related to computational efficiency. In particular, it is well known that the maximum of a constrained modular function can be found greedily if and only if the constraints are associated with a matroid. In this paper, we bring together the ideas of bandits and matroids, and propose a new class of combinatorial bandits, matroid bandits. The objective in these problems is to learn how to maximize a modular function on a matroid. This function is stochastic and initially unknown. We propose a practical algorithm for solving our problem, Optimistic Matroid Maximization (OMM); and prove two upper bounds, gap-dependent and gap-free, on its regret. Both bounds are sublinear in time and at most linear in all other quantities of interest. The gap-dependent upper bound is tight and we prove a matching lower bound on a partition matroid bandit. Finally, we evaluate our method on three real-world problems and show that it is practical

    Trend Detection based Regret Minimization for Bandit Problems

    Full text link
    We study a variation of the classical multi-armed bandits problem. In this problem, the learner has to make a sequence of decisions, picking from a fixed set of choices. In each round, she receives as feedback only the loss incurred from the chosen action. Conventionally, this problem has been studied when losses of the actions are drawn from an unknown distribution or when they are adversarial. In this paper, we study this problem when the losses of the actions also satisfy certain structural properties, and especially, do show a trend structure. When this is true, we show that using \textit{trend detection}, we can achieve regret of order O~(NTK)\tilde{O} (N \sqrt{TK}) with respect to a switching strategy for the version of the problem where a single action is chosen in each round and O~(NmTK)\tilde{O} (Nm \sqrt{TK}) when mm actions are chosen each round. This guarantee is a significant improvement over the conventional benchmark. Our approach can, as a framework, be applied in combination with various well-known bandit algorithms, like Exp3. For both versions of the problem, we give regret guarantees also for the \textit{anytime} setting, i.e. when the length of the choice-sequence is not known in advance. Finally, we pinpoint the advantages of our method by comparing it to some well-known other strategies

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201
    • …
    corecore