9,192 research outputs found

    IMPROVING THE DEPENDABILITY OF DESTINATION RECOMMENDATIONS USING INFORMATION ON SOCIAL ASPECTS

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process

    Constraint capture and maintenance in engineering design

    Get PDF
    The Designers' Workbench is a system, developed by the Advanced Knowledge Technologies (AKT) consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design as well as with the company's design rule book(s). In the principal application discussed here, the evolving design is described against a jet engine ontology. Design rules are expressed as constraints over the domain ontology. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge engineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench's knowledge base (KB). This is an error prone and time consuming task. It is highly desirable to relieve the knowledge engineer of this task, and so we have developed a system, ConEditor+ that enables domain experts themselves to capture and maintain these constraints. Further we hypothesize that in order to appropriately apply, maintain and reuse constraints, it is necessary to understand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application conditions” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting inconsistencies, subsumption, redundancy, fusion between constraints and suggesting appropriate refinements. The proposed methodology provides immediate benefits to the designers and hence should encourage them to input the application conditions (rationales)

    Specification and implementation of mapping rule visualization and editing : MapVOWL and the RMLEditor

    Get PDF
    Visual tools are implemented to help users in defining how to generate Linked Data from raw data. This is possible thanks to mapping languages which enable detaching mapping rules from the implementation that executes them. However, no thorough research has been conducted so far on how to visualize such mapping rules, especially if they become large and require considering multiple heterogeneous raw data sources and transformed data values. In the past, we proposed the RMLEditor, a visual graph-based user interface, which allows users to easily create mapping rules for generating Linked Data from raw data. In this paper, we build on top of our existing work: we (i) specify a visual notation for graph visualizations used to represent mapping rules, (ii) introduce an approach for manipulating rules when large visualizations emerge, and (iii) propose an approach to uniformly visualize data fraction of raw data sources combined with an interactive interface for uniform data fraction transformations. We perform two additional comparative user studies. The first one compares the use of the visual notation to present mapping rules to the use of a mapping language directly, which reveals that the visual notation is preferred. The second one compares the use of the graph-based RMLEditor for creating mapping rules to the form-based RMLx Visual Editor, which reveals that graph-based visualizations are preferred to create mapping rules through the use of our proposed visual notation and uniform representation of heterogeneous data sources and data values. (C) 2018 Elsevier B.V. All rights reserved

    Improving the Dependability of Destination Recommendations using Information on Social Aspects

    Get PDF
    Prior knowledge of the social aspects of prospective destinations can be very influential in making travel destination decisions, especially in instances where social concerns do exist about specific destinations. In this paper, we describe the implementation of an ontology-enabled Hybrid Destination Recommender System (HDRS) that leverages an ontological description of five specific social attributes of major Nigerian cities, and hybrid architecture of content-based and case-based filtering techniques to generate personalised top-n destination recommendations. An empirical usability test was conducted on the system, which revealed that the dependability of recommendations from Destination Recommender Systems (DRS) could be improved if the semantic representation of social attributes information of destinations is made a factor in the destination recommendation process.Content-based filtering; Recommender Systems; Ontology; Social Attributes, Destination recommendation

    (MU-CTL-01-12) Towards Model Driven Game Engineering in SimSYS: Requirements for the Agile Software Development Process Game

    Get PDF
    Software Engineering (SE) and Systems Engineering (Sys) are knowledge intensive, specialized, rapidly changing disciplines; their educational infrastructure faces significant challenges including the need to rapidly, widely, and cost effectively introduce new or revised course material; encourage the broad participation of students; address changing student motivations and attitudes; support undergraduate, graduate and lifelong learning; and incorporate the skills needed by industry. Games have a reputation for being fun and engaging; more importantly immersive, requiring deep thinking and complex problem solving. We believe educational games are essential in the next generation of e-learning tools. An extensible, freely available, engaging, problem-based game platform that provides students with an interactive simulated experience closely resembling the activities performed in a (real) industry development project would transform the SE/Sys education infrastructure. Our goal is to extend the state-of-the-art research in SE/Sys education by investigating a game development platform (GDP) from an interdisciplinary perspective (education, game research, and software/systems engineering). A meta-model has been proposed to provide a rigourous foundation that integrates the three disciplines. The GDP is intended to support the semi-automated development of collections of scripted games and their execution, where each game embodies a specific set of learning objectives. The games are scripted using a template based approach. The templates integrate three approaches: use cases; storyboards; and state machines (timed, concurrent, hierarchical state machines). The specification templates capture the structure of the game (Game, Acts, Scenes, Screens, Challenges), storyline, characters (player, non-player, external), graphics, music/sound effects, rules, and so on. The instantiated templates are (manually) transformed into XML game scripts that can be loaded into the SimSYS Game Play Engine. As a game is played, the game play events are logged; they are analyzed to automatically assess a player’s accomplishments and automatically adapt the game play script. Currently, we are manually defining a collection of games. The games are being used to ensure the GDP is flexible and reliable (i.e., the prototype can load and correctly run a variety of game scripts), the ontology is comprehensive, and the templates assist in defining well-organized, modular game scripts. In this report, we present the initial part of an Agile Software Development Process game (Act I, Scenes 1 and 2) that embodies learning objectives related to SE fundamentals (requirements, architecture, testing, process); planning with Gantt charts; working with budgets; and selecting a team for an agile development project. A student player is rewarded in the game by getting hired, scoring points, or getting promoted to lead a project. The game has a variety of settings including a classroom, job fair, and a work environment with meeting rooms, cubicles, and a water cooler station. The main non-player characters include a teacher, boss, and an evil peer. In the future, semi-automated support for creating new game scripts will be explored using a wizard interface. The templates will be formally defined, supporting automated transformation into XML game scripts that can be loaded into the SimSYS Game Engine. We also plan to explore transforming the requirements into a notation that can be imported into a commercial tool that supports Statechart simulation
    • 

    corecore