5 research outputs found

    Deep Sequence Models for Text Classification Tasks

    Full text link
    The exponential growth of data generated on the Internet in the current information age is a driving force for the digital economy. Extraction of information is the major value in an accumulated big data. Big data dependency on statistical analysis and hand-engineered rules machine learning algorithms are overwhelmed with vast complexities inherent in human languages. Natural Language Processing (NLP) is equipping machines to understand these human diverse and complicated languages. Text Classification is an NLP task which automatically identifies patterns based on predefined or undefined labeled sets. Common text classification application includes information retrieval, modeling news topic, theme extraction, sentiment analysis, and spam detection. In texts, some sequences of words depend on the previous or next word sequences to make full meaning; this is a challenging dependency task that requires the machine to be able to store some previous important information to impact future meaning. Sequence models such as RNN, GRU, and LSTM is a breakthrough for tasks with long-range dependencies. As such, we applied these models to Binary and Multi-class classification. Results generated were excellent with most of the models performing within the range of 80% and 94%. However, this result is not exhaustive as we believe there is room for improvement if machines are to compete with humans

    Machine learning based augmented reality for improved learning application through object detection algorithms

    Get PDF
    Detection of objects and their location in an image are important elements of current research in computer vision. In May 2020, Meta released its state-of-the-art object-detection model based on a transformer architecture called detection transformer (DETR). There are several object-detection models such as region-based convolutional neural network (R-CNN), you only look once (YOLO) and single shot detectors (SSD), but none have used a transformer to accomplish this task. These models mentioned earlier, use all sorts of hyperparameters and layers. However, the advantages of using a transformer pattern make the architecture simple and easy to implement. In this paper, we determine the name of a chemical experiment through two steps: firstly, by building a DETR model, trained on a customized dataset, and then integrate it into an augmented reality mobile application. By detecting the objects used during the realization of an experiment, we can predict the name of the experiment using a multi-class classification approach. The combination of various computer vision techniques with augmented reality is indeed promising and offers a better user experience

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202
    corecore