41 research outputs found

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Auction-Based Efficient Online Incentive Mechanism Designs in Wireless Networks

    Get PDF
    Recently, wide use of mobile devices and applications, such as YouTube and Twitter, has facilitated every aspect of our daily lives. Meanwhile, it has also posed great challenges to enable resource-demanding users to successfully access networks. Thus, in order to enlarge network capacity and fully make use of vacant resources, new communication architectures emerge, such as D2D communications, edge computing, and crowdsourcing, all of which ask for involvement of end mobile users in assisting transmission, computation, or network management. However, end mobile users are not always willing to actively provide such sharing services if no reimbursements are provided as they need to consume their own computation and communication resources. Besides, since mobile users are not always stationary, they can opt-in and opt-out the network for their own convenience. Thus, an important practical characteristic of wireless networks, i.e., the mobility of mobile users cannot be ignored, which means that the demands of mobile users span over a period of time. As one of promising solutions, the online incentive mechanism design has been introduced in wireless networks in order to motivate the participation of more mobile users under a dynamic environment. In this thesis, with the analyses of each stakeholder's economic payoffs in wireless networks, the auction-based online incentive mechanisms are proposed to achieve resource allocations, participant selections, and payment determinations in two wireless networks, i.e., Crowdsensing and mobile edge computing. In particular, i) an online incentive mechanism is designed to guarantee Quality of Information of each arriving task in mobile crowdsensing networks, followed by an enhanced online strategy which could further improves the competitive ratio; ii) an online incentive mechanism jointly considering communication and computation resource allocations in collaborative edge computing networks is proposed based on the primal-dual theory; iii) to deal with the nonlinear issue in edge computing networks, an nonlinear online incentive mechanism under energy budget constraints of mobile users is designed based on the Maximal-in-Distributional Range framework; and iv) inspired by the recent development of deep learning techniques, a deep incentive mechanism with the budget balance of each mobile user is proposed to maximize the net revenue of service providers by leveraging the multi-task machine learning model. Both theoretical analyses and numerical results demonstrate the effectiveness of the designed mechanisms

    Integrating IoT-Sensing and Crowdsensing with Privacy: Privacy-Preserving Hybrid Sensing for Smart Cities

    Full text link
    Data sensing and gathering is an essential task for various information-driven services in smart cities. On the one hand, Internet of Things (IoT) sensors can be deployed at certain fixed locations to capture data reliably but suffer from limited sensing coverage. On the other hand, data can also be gathered dynamically through crowdsensing contributed by voluntary users but suffer from its unreliability and the lack of incentives for users' contributions. In this paper, we explore an integrated paradigm called "hybrid sensing" that harnesses both IoT-sensing and crowdsensing in a complementary manner. In hybrid sensing, users are incentivized to provide sensing data not covered by IoT sensors and provide crowdsourced feedback to assist in calibrating IoT-sensing. Their contributions will be rewarded with credits that can be redeemed to retrieve synthesized information from the hybrid system. In this paper, we develop a hybrid sensing system that supports explicit user privacy -- IoT sensors are obscured physically to prevent capturing private user data, and users interact with a crowdsensing server via a privacy-preserving protocol to preserve their anonymity. A key application of our system is smart parking, by which users can inquire and find the available parking spaces in outdoor parking lots. We implemented our hybrid sensing system for smart parking and conducted extensive empirical evaluations. Finally, our hybrid sensing system can be potentially applied to other information-driven services in smart cities.Comment: To appear in ACM Transactions on Internet of Thing

    MODELING AND RESOURCE ALLOCATION IN MOBILE WIRELESS NETWORKS

    Get PDF
    We envision that in the near future, just as Infrastructure-as-a-Service (IaaS), radios and radio resources in a wireless network can also be provisioned as a service to Mobile Virtual Network Operators (MVNOs), which we refer to as Radio-as-a-Service (RaaS). In this thesis, we present a novel auction-based model to enable fair pricing and fair resource allocation according to real-time needs of MVNOs for RaaS. Based on the proposed model, we study the auction mechanism design with the objective of maximizing social welfare. We present an Integer Linear Programming (ILP) and Vickrey-Clarke-Groves (VCG) based auction mechanism for obtaining optimal social welfare. To reduce time complexity, we present a polynomial-time greedy mechanism for the RaaS auction. Both methods have been formally shown to be truthful and individually rational. Meanwhile, wireless networks have become more and more advanced and complicated, which are generating a large amount of runtime system statistics. In this thesis, we also propose to leverage the emerging deep learning techniques for spatiotemporal modeling and prediction in cellular networks, based on big system data. We present a hybrid deep learning model for spatiotemporal prediction, which includes a novel autoencoder-based deep model for spatial modeling and Long Short-Term Memory units (LSTMs) for temporal modeling. The autoencoder-based model consists of a Global Stacked AutoEncoder (GSAE) and multiple Local SAEs (LSAEs), which can offer good representations for input data, reduced model size, and support for parallel and application-aware training. Mobile wireless networks have become an essential part in wireless networking with the prevalence of mobile device usage. Most mobile devices have powerful sensing capabilities. We consider a general-purpose Mobile CrowdSensing(MCS) system, which is a multi-application multi-task system that supports a large variety of sensing applications. In this thesis, we also study the quality of the recruited crowd for MCS, i.e., quality of services/data each individual mobile user and the whole crowd are potentially capable of providing. Moreover, to improve flexibility and effectiveness, we consider fine-grained MCS, in which each sensing task is divided into multiple subtasks and a mobile user may make contributions to multiple subtasks. More specifically, we first introduce mathematical models for characterizing the quality of a recruited crowd for different sensing applications. Based on these models, we present a novel auction formulation for quality-aware and fine- grained MCS, which minimizes the expected expenditure subject to the quality requirement of each subtask. Then we discuss how to achieve the optimal expected expenditure, and present a practical incentive mechanism to solve the auction problem, which is shown to have the desirable properties of truthfulness, individual rationality and computational efficiency. In a MCS system, a sensing task is dispatched to many smartphones for data collections; in the meanwhile, a smartphone undertakes many different sensing tasks that demand data from various sensors. In this thesis, we also consider the problem of scheduling different sensing tasks assigned to a smartphone with the objective of minimizing sensing energy consumption while ensuring Quality of SenSing (QoSS). First, we consider a simple case in which each sensing task only requests data from a single sensor. We formally define the corresponding problem as the Minimum Energy Single-sensor task Scheduling (MESS) problem and present a polynomial-time optimal algorithm to solve it. Furthermore, we address a more general case in which some sensing tasks request multiple sensors to re- port their measurements simultaneously. We present an Integer Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms, for the corresponding Minimum Energy Multi-sensor task Scheduling (MEMS) problem. Numerical results are presented to confirm the theoretical analysis of our schemes, and to show strong performances of our solutions, compared to several baseline methods

    Online Pricing Incentive to Sample Fresh Information

    Full text link
    Today mobile users such as drivers are invited by content providers (e.g., Tripadvisor) to sample fresh information of diverse paths to control the age of information (AoI). However, selfish drivers prefer to travel through the shortest path instead of the others with extra costs in time and gas. To motivate drivers to route and sample diverse paths, this paper is the first to propose online pricing for a provider to economically reward drivers for diverse routing and control the actual AoI dynamics over time and spatial path domains. This online pricing optimization problem should be solved without knowing drivers' costs and even arrivals, and is intractable due to the curse of dimensionality in both time and space. If there is only one non-shortest path, we leverage the Markov decision process (MDP) techniques to analyze the problem. Accordingly, we design a linear-time algorithm for returning optimal online pricing, where a higher pricing reward is needed for a larger AoI. If there are a number of non-shortest paths, we prove that pricing one path at a time is optimal, yet it is not optimal to choose the path with the largest current AoI. Then we propose a new backward-clustered computation method and develop an approximation algorithm to alternate different paths to price over time. Perhaps surprisingly, our analysis of approximation ratio suggests that our algorithm's performance approaches closer to optimum given more paths.Comment: 14 pages, 13 figure

    PREFERENCE-AWARE TASK ASSIGNMENT IN MOBILE CROWDSENSING

    Get PDF
    Mobile crowdsensing (MCS) is an emerging form of crowdsourcing, which facilitates the sensing data collection with the help of mobile participants (workers). A central problem in MCS is the assignment of sensing tasks to workers. Existing work in the field mostly seek a system-level optimization of task assignments (e.g., maximize the number of completed tasks, minimize the total distance traveled by workers) without considering individual preferences of task requesters and workers. However, users may be reluctant to participate in MCS campaigns that disregard their preferences. In this dissertation, we argue that user preferences should be a primary concern in the task assignment process for an MCS campaign to be effective, and we develop preference-aware task assignment (PTA) mechanisms for five different MCS settings. Since the PTA problem is computationally hard in most of these settings, we present efficient approximation and heuristic algorithms. Extensive simulations performed on synthetic and real data sets validate our theoretical results, and demonstrate that the proposed algorithms produce near-optimal solutions in terms of preference-awareness, outperforming the state-of-the-art assignment algorithms by a wide margin in most cases
    corecore