12,341 research outputs found

    Stacked Auto Encoder Based Deep Reinforcement Learning for Online Resource Scheduling in Large-Scale MEC Networks

    Get PDF
    An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet-of-Things (IoT) users, by optimizing offloading decision, transmission power, and resource allocation in the large-scale mobile-edge computing (MEC) system. Toward this end, a deep reinforcement learning (DRL)-based solution is proposed, which includes the following components. First, a related and regularized stacked autoencoder (2r-SAE) with unsupervised learning is applied to perform data compression and representation for high-dimensional channel quality information (CQI) data, which can reduce the state space for DRL. Second, we present an adaptive simulated annealing approach (ASA) as the action search method of DRL, in which an adaptive h -mutation is used to guide the search direction and an adaptive iteration is proposed to enhance the search efficiency during the DRL process. Third, a preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy. The numerical results are provided to demonstrate that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computational time compared with existing benchmarks

    Feedback Allocation For OFDMA Systems With Slow Frequency-domain Scheduling

    Get PDF
    We study the problem of allocating limited feedback resources across multiple users in an orthogonal-frequency-division-multiple-access downlink system with slow frequency-domain scheduling. Many flavors of slow frequency-domain scheduling (e.g., persistent scheduling, semi-persistent scheduling), that adapt user-sub-band assignments on a slower time-scale, are being considered in standards such as 3GPP Long-Term Evolution. In this paper, we develop a feedback allocation algorithm that operates in conjunction with any arbitrary slow frequency-domain scheduler with the goal of improving the throughput of the system. Given a user-sub-band assignment chosen by the scheduler, the feedback allocation algorithm involves solving a weighted sum-rate maximization at each (slow) scheduling instant. We first develop an optimal dynamic-programming-based algorithm to solve the feedback allocation problem with pseudo-polynomial complexity in the number of users and in the total feedback bit budget. We then propose two approximation algorithms with complexity further reduced, for scenarios where the problem exhibits additional structure.Comment: Accepted to IEEE Transactions on Signal Processin
    • …
    corecore