22,996 research outputs found

    Expressing the tacit knowledge of a digital library system as linked data

    Get PDF
    Library organizations have enthusiastically undertaken semantic web initiatives and in particular the data publishing as linked data. Nevertheless, different surveys report the experimental nature of initiatives and the consumer difficulty in re-using data. These barriers are a hindrance for using linked datasets, as an infrastructure that enhances the library and related information services. This paper presents an approach for encoding, as a Linked Vocabulary, the "tacit" knowledge of the information system that manages the data source. The objective is the improvement of the interpretation process of the linked data meaning of published datasets. We analyzed a digital library system, as a case study, for prototyping the "semantic data management" method, where data and its knowledge are natively managed, taking into account the linked data pillars. The ultimate objective of the semantic data management is to curate the correct consumers' interpretation of data, and to facilitate the proper re-use. The prototype defines the ontological entities representing the knowledge, of the digital library system, that is not stored in the data source, nor in the existing ontologies related to the system's semantics. Thus we present the local ontology and its matching with existing ontologies, Preservation Metadata Implementation Strategies (PREMIS) and Metadata Objects Description Schema (MODS), and we discuss linked data triples prototyped from the legacy relational database, by using the local ontology. We show how the semantic data management, can deal with the inconsistency of system data, and we conclude that a specific change in the system developer mindset, it is necessary for extracting and "codifying" the tacit knowledge, which is necessary to improve the data interpretation process

    Going Deeper with Semantics: Video Activity Interpretation using Semantic Contextualization

    Full text link
    A deeper understanding of video activities extends beyond recognition of underlying concepts such as actions and objects: constructing deep semantic representations requires reasoning about the semantic relationships among these concepts, often beyond what is directly observed in the data. To this end, we propose an energy minimization framework that leverages large-scale commonsense knowledge bases, such as ConceptNet, to provide contextual cues to establish semantic relationships among entities directly hypothesized from video signal. We mathematically express this using the language of Grenander's canonical pattern generator theory. We show that the use of prior encoded commonsense knowledge alleviate the need for large annotated training datasets and help tackle imbalance in training through prior knowledge. Using three different publicly available datasets - Charades, Microsoft Visual Description Corpus and Breakfast Actions datasets, we show that the proposed model can generate video interpretations whose quality is better than those reported by state-of-the-art approaches, which have substantial training needs. Through extensive experiments, we show that the use of commonsense knowledge from ConceptNet allows the proposed approach to handle various challenges such as training data imbalance, weak features, and complex semantic relationships and visual scenes.Comment: Accepted to WACV 201

    Addressing the tacit knowledge of a digital library system

    Get PDF
    Recent surveys, about the Linked Data initiatives in library organizations, report the experimental nature of related projects and the difficulty in re-using data to provide improvements of library services. This paper presents an approach for managing data and its "tacit" organizational knowledge, as the originating data context, improving the interpretation of data meaning. By analyzing a Digital Libray system, we prototyped a method for turning data management into a "semantic data management", where local system knowledge is managed as a data, and natively foreseen as a Linked Data. Semantic data management aims to curates the correct consumers' understanding of Linked Datasets, driving to a proper re-use

    A semantic web approach for built heritage representation

    Get PDF
    In a built heritage process, meant as a structured system of activities aimed at the investigation, preservation, and management of architectural heritage, any task accomplished by the several actors involved in it is deeply influenced by the way the knowledge is represented and shared. In the current heritage practice, knowledge representation and management have shown several limitations due to the difficulty of dealing with large amount of extremely heterogeneous data. On this basis, this research aims at extending semantic web approaches and technologies to architectural heritage knowledge management in order to provide an integrated and multidisciplinary representation of the artifact and of the knowledge necessary to support any decision or any intervention and management activity. To this purpose, an ontology-based system, representing the knowledge related to the artifact and its contexts, has been developed through the formalization of domain-specific entities and relationships between them

    More cat than cute? Interpretable Prediction of Adjective-Noun Pairs

    Full text link
    The increasing availability of affect-rich multimedia resources has bolstered interest in understanding sentiment and emotions in and from visual content. Adjective-noun pairs (ANP) are a popular mid-level semantic construct for capturing affect via visually detectable concepts such as "cute dog" or "beautiful landscape". Current state-of-the-art methods approach ANP prediction by considering each of these compound concepts as individual tokens, ignoring the underlying relationships in ANPs. This work aims at disentangling the contributions of the `adjectives' and `nouns' in the visual prediction of ANPs. Two specialised classifiers, one trained for detecting adjectives and another for nouns, are fused to predict 553 different ANPs. The resulting ANP prediction model is more interpretable as it allows us to study contributions of the adjective and noun components. Source code and models are available at https://imatge-upc.github.io/affective-2017-musa2/ .Comment: Oral paper at ACM Multimedia 2017 Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes (MUSA2

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    COSMOS-7: Video-oriented MPEG-7 scheme for modelling and filtering of semantic content

    Get PDF
    MPEG-7 prescribes a format for semantic content models for multimedia to ensure interoperability across a multitude of platforms and application domains. However, the standard leaves it open as to how the models should be used and how their content should be filtered. Filtering is a technique used to retrieve only content relevant to user requirements, thereby reducing the necessary content-sifting effort of the user. This paper proposes an MPEG-7 scheme that can be deployed for semantic content modelling and filtering of digital video. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user
    corecore