28 research outputs found

    Generalized Multiscale Finite Element Methods for problems in perforated heterogeneous domains

    Get PDF
    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales (see Figure 1 for the illustration of a perforated domain). Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works [14, 18, 17], where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domain; (2) elasticity equation in perforated domain; and (3) Stokes equations in perforated domain. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere

    Asymptotic analysis of a semi-linear elliptic system in perforated domains: well-posedness and correctors for the homogenization limit

    Get PDF
    In this study, we prove results on the weak solvability and homogenization of a microscopic semi-linear elliptic system posed in perforated media. The model presented here explores the interplay between stationary diffusion and both surface and volume chemical reactions in porous media. Our interest lies in deriving homogenization limits (upscaling) for alike systems and particularly in justifying rigorously the obtained averaged descriptions. Essentially, we prove the well-posedness of the microscopic problem ensuring also the positivity and boundedness of the involved concentrations and then use the structure of the two scale expansions to derive corrector estimates delimitating this way the convergence rate of the asymptotic approximates to the macroscopic limit concentrations. Our techniques include Moser-like iteration techniques, a variational formulation, two-scale asymptotic expansions as well as energy-like estimates.Comment: 22 pages, 1 figur

    A high-order corrector estimate for a semi-linear elliptic system in perforated domains

    Get PDF
    We derive in this note a high-order corrector estimate for the homogenization of a microscopic semi-linear elliptic system posed in perforated domains. The major challenges are the presence of nonlinear volume and surface reaction rates. This type of correctors justifies mathematically the convergence rate of formal asymptotic expansions for the two-scale homogenization settings. As main tool, we follow the standard approach by the energy-like method to investigate the error estimate between the micro and macro concentrations and micro and macro concentration gradients. This work aims at generalizing the results reported in [2, 7].Comment: 6 pages, 1 figur

    Partially Explicit Time Discretization for Nonlinear Time Fractional Diffusion Equations

    Full text link
    Nonlinear time fractional partial differential equations are widely used in modeling and simulations. In many applications, there are high contrast changes in media properties. For solving these problems, one often uses coarse spatial grid for spatial resolution. For temporal discretization, implicit methods are often used. For implicit methods, though the time step can be relatively large, the equations are difficult to compute due to the nonlinearity and the fact that one deals with large-scale systems. On the other hand, the discrete system in explicit methods are easier to compute but it requires small time steps. In this work, we propose the partially explicit scheme following earlier works on developing partially explicit methods for nonlinear diffusion equations. In this scheme, the diffusion term is treated partially explicitly and the reaction term is treated fully explicitly. With the appropriate construction of spaces and stability analysis, we find that the required time step in our proposed scheme scales as the coarse mesh size, which creates a great saving in computing. The main novelty of this work is the extension of our earlier works for diffusion equations to time fractional diffusion equations. For the case of fractional diffusion equations, the constraints on time steps are more severe and the proposed methods alleviate this since the time step in partially explicit method scales as the coarse mesh size. We present stability results. Numerical results are presented where we compare our proposed partially explicit methods with a fully implicit approach. We show that our proposed approach provides similar results, while treating many degrees of freedom in nonlinear terms explicitly.Comment: 20 pages, 15 figure
    corecore