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Asymptotic analysis of a semi-linear elliptic system in perforated domains:
well-posedness and correctors for the homogenization limit
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b Department of Mathematics and Computer Science, Karlstad University, Sweden

Abstract

In this study, we prove results on the weak solvability and homogenization of a microscopic semi-linear elliptic system
posed in perforated media. The model presented here explores the interplay between stationary diffusion and both
surface and volume chemical reactions in porous media. Our interest lies in deriving homogenization limits (upscaling)
for alike systems and particularly in justifying rigorously the obtained averaged descriptions. Essentially, we prove the
well-posedness of the microscopic problem ensuring also the positivity and boundedness of the involved concentrations
and then use the structure of the two scale expansions to derive corrector estimates delimitating this way the convergence
rate of the asymptotic approximates to the macroscopic limit concentrations. Our techniques include Moser-like iteration
techniques, a variational formulation, two-scale asymptotic expansions as well as energy-like estimates.

Keywords: Corrector estimates, Homogenization, Elliptic systems, Perforated domains
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1. Introduction
We study the semi-linear elliptic boundary-value problem of the form

Afus =V - (=diVuE) = R; (uf), in Q° C RY,
(P%): deVus -n = e (aSuf — bEF; (uf)), onTe, (1.1)

us =0, on I'é#t,

fori € {1,...,N} (N > 2,d € {2,3}). Following [I], this system models the diffusion in a porous medium as well as
the aggregation, dissociation and surface deposition of IV interacting populations of colloidal particles indexed by uf. As
short-hand notation, u® := (ug, ..., u5,) points out the vector of these concentrations. Such scenarios arise in drug-delivery
mechanisms in human bodies and often includes cross- and thermo-diffusion which are triggers of our motivation (compare
[2] for the Sorret and Dufour effects and [3] [4] for related cross-diffusion and chemotaxis-like systems).

The model involves a number of parameters: d represents molecular diffusion coeflicients, R; represents the
volume reaction rate, af, b; are the so-called deposition coefficients, while F; indicates a surface chemical reaction for the
immobile species. We refer to as problem (P¢).

The main purpose of this paper is to obtain corrector estimates that delimitate the error made when homogenizing
(averaging, upscaling, coarse graining...) the problem (P¢), i.e. we want to estimate the speed of convergence as ¢ — 0

of suitable norms of differences in micro-macro concentrations and micro-macro concentration gradients. This way we
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justify rigorously the upscaled models derived in [I] and prepare the playground to obtain corrector estimates for the
thermo-diffusion scenario discussed in [5]. From the corrector estimates perspective, the major mathematical difficulty
we meet here is the presence of the nonlinear surface reaction term. To quantify its contribution to the corrector terms
we use an energy-like approach very much inspired by [6]. The main result of the paper is Theorem [10| where we state
the corrector estimate. It is worth noting that this work goes along the line open by our works [7] (correctors via periodic
unfolding) and [8] (correctors by special test functions adapted to the local periodicity of the microstructures). An
alternative strategy to derive correctors for our scenario could in principle exclusively rely on periodic unfolding, refolding
and defect operators approach if the boundary conditions along the microstructure would be of homogeneous Neumann
type; compare [9] and [10].

The corrector estimates obtained with this framework can be further used to design convergent multiscale finite element
methods for the studied PDE system (see e.g. [I1] for the basic idea of the MSFEM approach and [12] for an application
to perforated media).

The paper is organized as follows: In Section [2] we start off with a set of technical preliminaries focusing especially
on the working assumptions on the data and the description of the microstructure of the porous medium. The weak
solvability of the microscopic model is established in Section [3] The homogenization method is applied in Section [4] to
the problem (P¢). This is the place where we derive the corrector estimates and establish herewith the convergence rate

of the homogenization process. A brief discussion (compare Section [5) closes the paper.

2. Preliminaries

2.1. Description of the geometry

The geometry of our porous medium is sketched in Figure (left), together with the choice of perforation (referred
here to also as ”microstructure”) cf. Figure (right). We refer the reader to [I3] for a concise mathematical represen-
tation of the perforated geometry. In the same spirit, take © be a bounded open domain in R? with a piecewise smooth

boundary I' = 9Q2. Let Y be the unit representative cell, i.e.

d
Y::{Z/\ié;‘lo<)\i<1},

i=1
where we denote by é; by ith unit vector in R,

Take Yj the open subset of Y with a piecewise smooth boundary 9Y; in such a way that Yy C Y. In the porous media
terminology, Y is the unit cell made of two parts: the gas phase (pore space) Y'\Y; and the solid phase Yj.

Let Z C R? be a hypercube. Then for X C Z we denote by X* the shifted subset

d
XF =X+ ki€,
=1

where k = (k1 ..., kq) € Z% is a vector of indices.
Setting Y7 = Y'\Yp, we now define the pore skeleton by
05 = | J {e¥d:vF cay,
kezd
where ¢ is observed as a given scale factor or homogenization parameter.

It thus comes out that the total pore space is

Q° = O\,
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for eYy¥ the e-homotetic set of Y, while the total pore surface of the skeleton is denoted by
=005 = | J {er*: " cq}.
kezd
The exterior boundary of F is certainly a hypersurface in RY, denoted by I'®** = 9Qf\I'*, where it has a nonzero
(d — 1)-dimensional measure, satisfies T¢** NT'® = ) and coincides with T'. Moreover, n denotes the unit normal vector to
re.

Finally, our perforated domain Q¢ is assumed to be connected through the gas phase. Notice here that I'*** is smooth.

/0

)
® 0 0o
o000 oo o
® 00 0o

QE

Figure 2.1: Admissible two-dimensional perforated domain (left) and basic geometry of the microstructure (right).

N.B. This paper aims at understanding the problem in two or three space dimensions. However, all our results hold
also for d > 3. Throughout this paper, C' denotes a generic constant which can change from line to line. If not otherwise

stated, the constant C' is independent of the choice of ¢.

2.2. Notation. Assumptions on the data

We denote by = € Q° the macroscopic variable and by y = z/e the microscopic variable representing fast variations

at the microscopic geometry. With this convention in view, we write

& (¢) = di (2) = i (v).

A similar meaning is given to all involved ”oscillating” data, e.g. to af (x), b5 (x).
We now make the following set of assumptions:

(A1) the diffusion coefficient df € L>° (Rd) is Y-periodic, and it exists a positive constant «; such that

di (y) &i&; > oq [¢° for any & € R



(A2) the deposition coefficients a$, b5 € L (I'¢) are positive and Y-periodic.
(A3) the reaction rates R; : Q° x [0,00) — R and F; : I'° x [0,00) — R are Carathéodory functions, i.e. they are,
respectively, continuous in [0, oo)N and [0, 00) with respect to x variable (in the “almost all” sense), and measurable in

so ° and I'® with essential boundedness with respect to concentrations u$ > 0.

(A4) The chemical rate R; and F; are sublinear in the sense that for any p = (p1,...,pn)

1+ Z DiDj fOTpZO’
Jj=1,g#i

)< C(1+p;) forp; >0,

for any p = (p1, .., DN)-
Furthermore, assume that R; (p) /p; is decreasing and F; (p;) /p; is increasing in p; for any p > 0.

(A5) For every e > 0, there exist vectors (z-dependent) r§, 75, f5, f2, whose elements are

R; (uf R; (uf
re, = lim 20Dl oy Bl
’ uf—0+t Uy ’ uj—oo  U;
f6,= lim ¢ a‘?—b‘?Fi(uf) .= lim ¢ ag—b‘?Fi(uf)
0,2 us 50+ 7 [ Uf ’ 00,1 uE o0 7 7 U? .
(Ag) R; and F; satisfy the growth conditions
N
|Ri (2,p)] <CY_ (1+p;)° forp>0, (2.1)
i=1
laspi — b F; (p;)| < C(1+pi)°  for p; > 0. (2.2)

Let us define the function space

Vei={ve H (O°)[v=0o0onT*"},

which is a closed subspace of the Hilbert space H! (2¢), and thus endowed with the semi-norm

Jolly- = (Z | 15

Obviously, this norm is equivalent to the usual H'-norm by the Poincaré inequality. Moreover, this equivalence is

1/2
oz, ) for allv € V°&.

uniform in & (cf. [6l Lemma 2.1]).

We introduce the Hilbert spaces
H(QF) = L2 (%) x .. x L2(Q°), V=V x..xVe

with the inner products defined respectively by

N
<U7U>H(Qe) :Z/ Ui’l)idl‘, U = (ula"'auN)7U: (U17"'71}N) GH(QE)7
i=178°

aul 8’1}1 5
ZZ/E 7z, 8x] z, u=(ug,..,un),v=(v1,..,0N5) € V.

=1 j=1
Furthermore, the notation H (I'?) indicates the corresponding product of L? (I'?) spaces. For ¢ € (2, o], the following
spaces are also used

WI(QF) = L () x ... x L (Q°),

W4 (D) = LY (T°) x ... x L9 (T%).
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3. Well-posedness of the microscopic model

Before studying the asymptotics behaviour as e — 0 (the homogenization limit), we must ensure the well-posedness
of the microstructure model. In this section we focus only on the weak solvability of the problem, the stability with
respect to the initial data and all parameter being straightforward to prove. We remark at this stage that the structure
of the model equation has attracted much attention. For example, Amann used in [I4] the method of sub- and super-
solutions to prove the existence of positive solutions when a Robin boundary condition is considered. Brezis and Oswald
introduced in [I5] an energy minimization approach to guarantee the existence, uniqueness and positivity results for the
semi-linear elliptic problem with zero Dirichlet boundary conditions. Very recently, Garcfa-Melidn et al. [16] extended the
result in [I5] (and also of other previous works including [I7, [I8]) to problems involving nonlinear boundary conditions of
mixed type. For what we are concerned here, we will use Moser-like iterations technique (see the original works by Moser
[19, 20]) to prove L*°-bounds for all concentrations and then follow the strategy provided by Brezis and Oswald [I5] to
study the well-posedness of (P¢).

Definition 1. A function u® € V* is a weak solution to (P¢) provided that

N
Z/ (d; Vu; Vi, — R; (u°) p; d:v—z / a;u; — b F; (u$)) pidS. =0 for all p € V°. (3.1)

Definition 2. By means of the usual variational characterization, the principal eigenvalue of (P¢) is defined by

N

> (a/ IVzU?Ide—N/ pe Iu?|2dw—N/ & |uz‘|2dss)
< < . i=1 QE Qs T'e
A (p7.q°) = inf ~ : (32)
2
weeve3 o > [ il s
i=1 =1

where p§ and ¢f are measurable such that either they are simultaneously bounded from above or from below (this leads

to A1 € (—00, 0] or A € [—00,00), correspondingly). Here, we denote o := min {ay, ..., an}.

Lemma 3. Assume (A1)-(As) and replace (Ay4) by (Ag). Let u® € VENH (') be a weak solution to (P°), then u® €

W (%) and it exists an e-independent constant C > 0 such that

1 e ey < © (1 16 ey + 16 e ) -

Proof. Let 8> 1and k; > 1foralli = 1, N. We begin by introducing a vector ¢° of test functions ¢ = min { s k5+2 }

1 where v; = uf + 1 with «{ as in (3.1). Thus, it is straightforward to show that ¢ € V* NH (I'?). We have
N & ot N
« ﬂ—|—) / v 2 |V / R; (x,u®) p;dx + / ) p5dSe
( 2 ; {vi<ki} ; € Z '
N
CZ/ |14 uf| UB+2d£U
i=1

N
+CZ I uf? WPregs,

IN

IN

[

IA
Q
7N
—
<
ey
£
Q
8
+
—
ey
+
Q.
g
N————
w
N

where we have used (2.1)) and (2.2).
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Now, for every i € {1,..., N}, if we assign ¢; = min {viz,ki’“ }, then one has

4(8+3)
(B+3)°

Since Q¢ is a Lipschitz domain, then the trace embedding H' (2°) C L?(99Q°) holds for 1 < g < 2}., where
25ge =2(d—1)/(d—2)if d > 3, and 2},. = oo if d =2 (cf. [2I]). Therefore, given g € (2,2*] we apply this embedding
o (3.3]) with the aid of (3.4) and then obtain
<C (/ .B+%dx+/ vf+gd5‘s) . (3.5)
. € FE

S [(fro)'- Lo

We see that 12 < v+3 and also

1 _1
(545 ) o0 190 Ny = T2 T (3.4)

2

holds for all 5 > 1. As a result, (3.5)) yields

N 2 N ) 5
> (/F Iwiqug> "<ca <ﬁ+ ‘;’) > (/Q o e + / vf+2d55> : (3.6)
= ;

i=1
Our next aim is to show that if for some s > 2 we have u® € W* (Q°) N W* (T¢), then u® € WF* (QF) N WFs (T'¢) for
k > 1 arbitrary at each e-level. In fact, assume that u® € W82 (Q°) N WFT2 (I¢) then letting k — oo in (3.6) gives

N

N 2
> (/F oy #(7+3) dsa) ‘<c (ﬂ + ‘Z) 3 (/ W e + / vargdSE) . (3.7)
—~ ,

=1
One obtains in the same manner that by the embedding H! (Q°) C L4(QF) (this is valid for 1 < ¢ < 2%. where
28 = 2d/(d—2) if d > 3, and 2§. = oo if d = 2; thus ¢ given before is definitely valid), we are led to the following

estimate
N

) 2 N s \
> (/Q | (P+8) dw) <C (ﬁ+ 2) > (/Q W2 e 4 /F vf+2d55) . (3.8)

i=1 i=1

Combining , and the Minkowski inequality enables us to get
% 3 N 3 3
</5 |Ui|%(ﬁ+%) dx+/r€ |’U7;|g(ﬁ+g)d55) <C <B+ 2) ; (/QE vf+2dx+/6v;-8+2d55) ,
for all i € {1,...,N}, which easily leads to, by raising to the power 1/ (8+ 3), the fact that u§ € 13(5+3) Q)N
L3(3+3) (%) for all i € {1,..., N}; and hence u* € W3(#+3) (@) n Wi (8+3) (12).
The constant k is indicated by ¢/2 > 1. Thus, if we choose ¢ and 5 such that

5+g=2(g)" forn=0,1,2, ...,

and iterating the above estimate, we obtain, by induction, that

Iolls" 1_1( 2y >;<gy folla, (39)

where we have denoted by
N 1

ol :Z( [wlrass [ |vi|"dSE>

=1
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n n
It is interesting to point out that since the series > - (%) and Y07 n (%) are convergent for ¢ > 2, we have

1 u3ye)"” < Vo

Therefore, the constant in the right-hand side of (3.9)) is indeed independent of n, and by passing n — oo in (3.9)), i.e.

in the inequality,

Il a3y g < € (IWllgany + Mollzerey)

) ey =
we finally obtain
lollweeaey < € (I0llgey + Molyre)) -
Consequently, recalling v; = u§ + 1, we have:
1 e ey < C (1 10 ey + 16 e ) -
This step completes the proof of the lemma. O

Remark 4. Using the trace inequality (cf. [6, Lemma 2.31]) and the norm equivalence between V¢ and H* (Qf), if u® € V°

then the result in Lemma B reads

IN

I leiaey < C (142 0 ey + 1l )

< (142 ).

Lemma 5. Assume (A1)-(As) and that Ay (15, fS) > 0 and A (v, f§) < 0 hold. We define the following functional

N N N
1
:iz/ d§|Vuﬂ2dx—Z/ Ri(x,u)de—> [ Fi(z,uf)ds.,
=17 ° i=17 i=17T°

where

.
Wy
) :/ R; (z,u3,...85, ..., uly) ds;,
0

ug
Fi(x,uf) = / (a5s — b5 F; (s)) ds,
0
and the nonlinear terms are extended to be R; (x,0) and F;(x,0) for ui < 0. Then J is coercive on V¢ and lower

semi-continuous for VE. Moreover, there exists ¢ € V¢ such that J[¢] < 0.

Proof. Step 1: (Coerciveness)

Suppose, by contradiction, that it exists a sequence {u*™} C V*® such that [[u*™||,,. — oo while J [u®™] < C. Setting

1/2 1/2
:</ uf’m|2d55> , ti,m:</ |uf’m|2da:> , (3.10)
€ SE

we say that Z — 00 up to a subsequence as m — co. Indeed, the assumption J [u®™] < C' yields that

zlzm

N N N

1

52/9 & |[Vus™ ) do < Z/Q Ri (x,u=™)dz + g Fi (z,u5™)dS: + C, (3.11)
i=1 v i=1 v i=171¢

which, in combination with (3.10) and (A4), leads to

N
72/ & |Vus™ ) dz < C (N <1+Zt +Zsim>. (3.12)
=1



Here, if va t?  is convergent, then Ziv 5?2 cannot be bounded. While putting

=1"%i,m =1°¢,m

N
e,m
Vim = U’ /E Sim>
=1

it enables us to derive that

N N

N Z/ |Vu§’m|2dx Z/ |Vuf’m|2 dzx
2;/(6 ‘V'Ui;m|2 dr = 1=1 - 5 S i=1 < ]
= (Z Si,m> Z Szz,m

i=1 i=1

80 If we assign « := min {ayq,...,an} > 0, then it follows from (3.12) and (3.13) that

N
Z/ & Vs ™ | da
i=1 78

N

N
«
52/ \Vvim|2dx <
. SE
)P
i=1
N
LA
< CN) |1+ 50—+ < C(N).

N =

N

§ : 2 § 2
Si,m Si,m

i=1 i=1

Now, we claim that there exists v; € V¢ such that v; ,, — v; weakly in V¢, and then strongly in L? (Q¢) and in L? (T'¢).

However, it implies here a contradiction. It is because we have v; = 0 in Qf for all : = 1, N while

N N 2N
Z/ jil* dS. = <Zs> Z/ ui|?dS. > N~' > 0.
i=17T¢ i=1 i=17T°
Let us now assume that Zfil tim is divergent. By putting
N
Wim = uf’m/z ti,m7
i=1
we have, in the same manner, that
N
2
N 1 > sim
e =
O3 [ WP ir <o) |14+ 2
i=1 78"

N N

§ : 2 § : 2
ti,m ti,m

i=1 i=1

From (3.10)), we know that

N N
Z/ Wi m|* dz = (Y tim Z/ s ™ de < 1, (3.14)
i=170° i=1 i=179°

and
N

N N -1 N ZS?,m
Zl/r |wim|* dS. > N~ <;tim> Zl/r e 2 dS, > ;V:Q (3.15)
- . " N tl m

=1 7



Combining the trace inequality (cf. [0, Lemma 2.31]) with (3.14)) and (3.15]), we obtain

IA N
Q Q
= =
T~
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M= L[]=
I~
S~ 5
4 E
& 3
= &
Ry ~_
~_ IS
— )
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+ @\
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El

=~

)

~_

=
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—

g

EN

=~y

)

~

It yields that

N

2C (N
Z/ \Vwi,m\deg ¢
i=179°

which finally leads to

1/2
N
Qe «

Therefore, fQE |Vwi,m|2 dx is bounded by the inequality (3.16). So, up to a subsequence, w; , — w; weakly in V¢,
and then strongly in L? (Q°) and L? (I'?). In addition, it can be proved that Ef\il Jo- lw;|*dz > N1 > 0, and from

(3.11)), it gives us that
o N
= [Vw; m|? da <
2 ),

1/2

—1
< C(N,e) 1+<Zt > foralli =1, N. (3.16)

E 7”

+Z/ R S.. (3.17)

Qe

d+Z/]:

Ie

Z tz,m

(z, (2,
N N
2 Z
We now consider the second integral on the right-hand side of the above inequality, then the third one is totally
similar. Using the fact that w; ,, — w; strongly in L? (QF) and the assumptions (A4)-(As) in combination with the Fatou
lemma, we get

R (w,us™)
lim sup / (z,u d < —Z/ Too.i |wi.m|? de,
Q

m—oo 1 JQe Z en{w>0}
t;

where we have also applied the following inequalities

i=1 i=1
€ 1
lim sup Z|(i’2u ) < irfxm (x) forae ze€Qf
u§ —o00 u.

Thus, passing to the limit in (3.17)) we are led to

o N N N

Q=n{w>0}

N
T&wadw+§:/) < lwi?ds. ).
5 Jren{w>0}

Recall that Ay (rS,, f2) > 0, it then gives us that w;r =0foralli =1, N. As a consequence, w; = 0 while it contradicts
the above result S0 | [o. |w;[* de > N~

Hence, J is coercive.
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Step 2: (Lower semi-continuity)
It can be proved as in [I5] [16] that: if u®™ — u® in V¢, then we obtain

limsup | R;(z,u®™)dx < R (x,u®)dx,

m—oo JQe Qe
limsup [ F;(z,u;™)dS: < [ Fi(z,uf)dSe:,
m—r oo Ie I's
by using the growth assumptions (A4) in combination with the Fatou lemma. Thus, J is lower semi-continuous.
This result tells us that J achieves the global minimum at a function v® € V°. If we replace u® by (u€)+7 u® can be
supposed to be non-negative. Moreover, the last step shows that u® is non-trivial.
Step 3: (Non-triviality of the minimisers)

What we need to prove now is that there exists ¢ € V¢ such that J[¢] < 0. In fact, given ¢ € V¢ N W*e satisfying
l¥]l\ye =1 and

N N
o> [ el < NS5 ( [ el [ e as.).
i=1 Y8 i=1 : c

In fact, here we assume that v is non-negative. By the assumptions (A4)-(Aj5), we have

. . Rz (x,&/)) ]. e 2 ]. c 2 e
timinf ) > Dl ()l 2 Sog (@) il forae € 9,
and
. 2T (% (Wi) 1 2
1gg(1}1+1f 5 > ifgl () |;|”  fora.e.x € T,

This coupling with the Fatou lemma enable us to obtain the following

N
<lim inf Ri(z,09) (502, did) dx + lim inf 7‘& (@, 6%))
— \ -0+ Jo- ) 50+ 62

N
> = 75, | ¥il” dx + f6.i [¥i d55>,
2Z(mo,| [ Jatw

which leads to
A (1
im sup

< 0.
d—0+t 62

Hence, to complete the proof, we need to choose ¢ = §1. O

Theorem 6. Assume (A1)-(As) and A1 (15, fS) > 0, A\ (v, f§) < 0 hold. Then (P¢) admits at least a non-negative
weak solution u® € V¢ N W™ (QF).

Proof. We begin the proof by introducing the approximate system
V- (=diVus) = RF (v), inQ°f CRY,
(P*e) - dEVus -n = G¥ (uf), on I'¢,
us =0, on [t

in which we have defined that for each integer k£ > 0 the truncated reaction rates

R (uf) o= max {—ku$, R; (u®)}, ifuf >0,

R; (0), if us <0,

10



and
emax {—kuf,afus — b5 F; (u5)}, ifuf >0,

(Rt et} 1T —

G (uf) =
—ebEFy (0), if us < 0.

It is easy to check that our truncated functions R¥ and G¥ fulfill both (A4) and (Ag). In addition, if we set elements

R’gﬂ, 00,17 Go ;» G¥_ , as functions in (As) by RF and G¥, one may prove that

k k k .
0. < RO i RS i f6.: < Gouy fooi < Go; forallie {1,..,N},

()OZ—

and \; (R, GE) <0 and A\ (RE,,GE)) > 0 for k large (see, e.g. [16]).
Thanks to Lemma |5 the problem (Pk’s) admits a global non-trivial and non-negative minimizer, denoted by u*¢

which belongs to V¢ and it is associated with the following functional

J* /aﬂVuﬂdw—Z/ RE (2, u dx—z FF(z,uf) dS..
FE

Furthermore, u** defines a weak solution to the problem (Pk’a) for every k and thus, u*¢ € W (QF) by Lemma

k,e

05 Now, we assign a vector v° whose elements are defined by v§ := min < u$, u, where u € V¢ is the global minimizer
9 7 Rt

constructed from the functional J. We shall prove that J [v°] < J [uf]. Note that when doing so, v € W (£2¢) and then
define a weak solution v € V¢ N W™ (Q°) to (P?).

In fact, one has

JF[uhe] < J[¢] for all ¢ € V=

Then by choosing ¢ such that ¢; := max {uz , uf } we have

Z/uk’5<u s pnas ( %

N
SZ/ ( |Vus|? — RE (z,u° )dx—Z/ FF(x,uf) dS.. (3.18)
o1 J{ul <us tnqe <ug bnre
T[] = T [uf S a: ([vube| — vus)) a
)=l = Z/u,_%s}maw(\ | = vl a

— Z /uk ) Ri (:c, uk’E) - R (x,ui)) dx

<uf }I’WQE

- Z /u’“ f<us nre Fi (a:,ui”) — 7 (:E,uf)) dSe- (3.19)

N

ka k,e
Vu — R (z,uf )> dx — Zl/{uf*5<u§}mri FF (x,ul )dS5

In addition, by the choice of J (see in Lemma [5)) we deduce that

On the other hand, (3.18)) yields

N
[{ S [RY (w,ut%) = Ri (w,u7) = (Ri (2,uh%) = Ri (2,u%))] <0, (3.20)

i=1
and

Z/uk . FF (z,ub) = FF (x,u%) — (F; (z,uP®) = F; (z,u%))] < 0. (3.21)

<us}ﬁl‘E
Hence, combining (3.18)-(3.2I)) we complete the proof of the lemma. This tells us that under assumptions (A)-(As)

w0 the problem (P¢) admits a non-negative, non-trivial and bounded weak vector of solutions u® at each e-level. O

11



105

Remark 7. If R; (u®) > —Mu$ in QF° (or for each subdomain of Q° if rigorously stated) for some e-dependent constant
M > 0 and all i € {1,..., N}, then (P?) has at least a positive, non-trivial and bounded weak solution u® by the Hopf
strong maximum principle. Furthermore, one may prove in the same vein in [I6, Lemma 13] that the solution is unique
by using vectors of test functions ¢§ and 1§ whose elements are given by

o (uE+0)° = (v5 +0)?

(uf +9)° — (v +0)°
905,2' - 'U/f n 5

v§ + 0

) ¢§,1 -

i

where u$ and v are two solutions of (P°) at each layer ¢ € {1,..., N}, which are expected to equal to each other.

Remark 8. In the case of zero Neumann boundary condition on I'?, if the nonlinearity R; is globally Lipschitzi with the
Lipschitz constant, denoted by L;, independent of the scale ¢ for any ¢ € {1,..., N}, then we may use an iterative scheme
to deal with the existence and uniqueness of solutions to our problem. In fact, for n € N such an iterative scheme is given
by
Vo (~avurmt) = Ry (i), in 07,
(PR): §devul™™ n=0, on I'¢, (3.22)

;,n—i—l = O

ext
; , on ['¢**

u

where the starting point is u° = 0.

This global Lipschitz assumption is an alternative to (A4) for R; and it is termed as (Aﬁl).

Theorem 9. Assume (A1) and (A3) hold (without F;) and suppose that the nonlinearity R; satisfy (A}) replaced by
(A4). Then, the problem (P¢) with zero Neumann boundary condition on T'° has a unique solution in V¢ if the constant

a~t maxi<;<n {L;} N is small enough.

Proof. It is worth noting that the problem (3.22)) admits a unique solution in V¢ for any n. Then, the functional

w;,n — ug,n—i—l _

i u;" € V€ satisfies the following problem:

Vo (=diVw]") = R; (u®") — R; (u®™71), inQF,
dEVw?™ -n =0, on '

w;™ = 0. on [e#t,

Using the test function ; € V¢ we arrive at
<dz§wi£7n7 ’(/}i>va = <Rz (ue,n) - Ri (ue,n—l) 7wi>L2(Qa)

We may consider an estimate for the above expression:

N

az ‘<w§7n)wi>ve

i=1

(3.23)

N
<> LN <w§’"‘1,wi>L2(Q€)
=1

Thanks to Holder’s and Poincaré inequalities, we have

N

Z ’<w?n7¢i>va

i=1

< Gpa™ max {Li} N [Jw""|

ve 19l

where C}, > 0 is the Poincaré constant independent of the choice of &, but the dimension d of the media (see, e.g. [0]

Lemma 2.1] and [22]).

12



110

115

120

At this point, if the constant o' maxj<;<y {L;} N is small enough such that , := Cpa™ ! maxj<;j<y {L;} N < 1,

then choosing 1; = w;" for i € {1,..., N} we obtain that

||w5,n

g,n—1 |

lpe < Kp ||w ve -

Consequently, for some k € N we get

||u5,n+k o us,n| - S Hua,nJrk o ue,n+k71| e 4o+ ||u€,n+1 o ua,n| -
< Hz+k71 ||u€’1 — us’O’ pe Tt Ky ||u‘5’1 — us’o‘ Ve
< R R 1) o
k? (1 — KkE
< p1(—,.; ) [|ust] e - (3.24)
P

Therefore, {u®"} is a Cauchy sequence in V¢, and then there exists uniquely u® € V¢ such that «™ — ¢ strongly
in V¥ as n — oo. Remarkably, this convergence combining with the Lipschitz property of R; leads to the fact that
R; (u®™) — R; (u®) strongly in V¢ as n — oo. As a result, the function u® is the solution of the problem (P¢) when
passing to the limit in n.

In addition, when k — oo, it follows from ([3.24)) that

||u6,n o uE” < HP ||u€,1|
Vi1 -k, Ve’

which implies the convergence rate of the linearization and guarantees the stability of the problem (P¢). O

4. Homogenization asymptotics. Corrector estimates

4.1. Two-scale asymptotic expansions

For every i € {1, ..., N}, we introduce the following Mth-order expansion (M > 2):

M
W (@) = 3 M () + O (M), we (4.1)

m=0

where u; ,,, (z,-) is Y-periodic for 0 < m < M.
It follows from (4.1f) that

M
Viui = (Va+e'V,) (Z Ui m + O (€M+1)>

m=0
M-1
= e 'Vyuio+ Y €™ (Vatlim + Vyttimi1) + O (). (4.2)
m=0

Using the relation of the operator .A° and (4.2), we compute that

Acui = (Vx —|—571Vy) . <—di (y)

M—-1
e 'Vyuio + Z e™ (Vi m + Vyu,-7m+1)]>
m=0
o) (gM—l) ,
then after collecting those having the same powers of £, we obtain
Acu; = g—va - (—=d; (y) Vyuio)
+e 7 Vo - (=di (y) Vyuin) + Vy - (=di (y) (Vouio + Vyuin))]
2

M—
+ g™ [Vi : (7d1 (y) (qui,m + vyui,m+1))

m=0
+V’y ! (_d’i (y) (qui,m+1 + Vyui,m+2))] +0 (5M71) . (43)

13



In the same vein, we take into consideration the boundary condition at I'* as follows:

M—1
—d;Vui -n = —d;(y) <5_1Vyui7o + Z e™ (VUi m + Vy'U;i,m_A'_l)) -n

m=0

M-1 M—1
= eb(y) F (Z amui7m> —a; (y) Z Emﬂui,m +0 (EM) . (4.4)

m=0 =0

It is worth noting that in order to investigate the convergence analysis, we give assumptions that allow to pull the

e-dependent quantities out of the nonlinearities R; and Fj:

M M M
R; (Z E™UL iy ey Z smuMm) = Z €™ R; (Wi s ooy unm) + O (€M), (4.5)
m=0 m=0

m=0

M M
Fi <Z Em’u,i,m> = Z é‘mF’i (ui,m) + O (€M+1) y (46)
m=0

m=0
in which R; and F; are global Lipschitz functions corresponding to the Lipschitz constant L; and Kj;, respectively, for
ie{l,..,N}.
From now on, collecting the coefficients of the same powers of € in and in combination with using and
, we are led to the following systems of elliptic problems, which we refer to the auxiliary problems:

Aguio =0, in Yy,
—d; (y) Vyu;0-n =0, on 9Yy, (4.7)

u;,0 is Y — periodic in y,

Aoum = —A1Ui,07 in Y7,
—d; (y) (Vaui0+ Vyu; 1) -n=0, on dYyp, (4.8)
u;,1 is Y — periodic in y,

Aotts mi2 = R (Um) — A1t ma1 — A2l m, in Y7,
—d; (y) (Vattims1 + Vylim2) -0 =b; (y) F; (wm) — a; (y) Ui m, on Yo, (4.9)
Ui m+2 18 Y — periodic in g,

for0<m< M —2.

125 Here, the notation u,, is ascribed to the vector containing elements u; ., for all ¢ € {1, ..., N}, and we have denoted by
Ao == Vy - (=di(y) Vy),
Ar = Vi (=di(y) Vy) + Vy - (=d;i (y) Vo),
A2 = Vi (=di(y) Va)

For the first auxiliary problem (4.7)), it is trivial to prove that the solution to (4.7)) is independent of y, and hence we

obtain
w0 (2,y) = tip (). (4.10)
For the second auxiliary problem (4.8), we recall the result in [23, Lemma 2.1] to ensure the existence and uniqueness

of periodic solutions to the elliptic problem, which is called the solvability condition. In this case, this condition satisfies

14



itself because we easily get from the PDE in (4.8)) that

_/ d; (y) vyui,l : ndSy = / d; (y) ani’o . IldSy7
vy Yo

by Gauf’s theorem. Thus, it claims the existence of a unique weak solution to (4.8)).

Moreover, this solution is sought by using separation of variables:
uin (2,y) = =X () - Valio () +C; (x) . (4.11)
Substituting (4.11)) into (4.8)), we obtain the ith cell problem:

AOXi = Vydl (y) ) in Y17
—d; (y) Vyxi -n=d; (y) -n, ondYy, (4.12)
X is Y — periodic in y,

in which the field x; (y) is called cell function. Additionally, by the definition of the mean value, we have

My (xi) : Xidy = 0. (4.13)

1
Y1 /v

As a consequence, it can be proved that y; belongs to the space H;L (Y1) /R and satisfies (4.13).
Now, it only remains to consider the third auxiliary problem (4.9). Assume that we have in mind the functions u,,
and 41, then to find w,, 2 let us remark that the right-hand side of the PDE in (4.9) can be rewritten as

Ri (um) — At mir — Agtiim = Ri (um) + Vy (di (y) Vattimi1)
+vm (dz (y) (vxui,m + vyui,erl)) . (414)
130 We define the operator £; (v) for i € {1,..., N} by multiplying (4.14) by a test function ¢ € C3° (Y1), as follows:
[/i (w) = Ri (um) ¢dy + vy (dz (y) kui,m-i-l) wdy

Y1 Yl

v Ve (di (y) (kui,m + Vyui,m+1)) pdy

RO /Y d; (4) Vst i1 Vb

+

+ . Ve (ds (y) (Vattim + vyui,m+1)) pdy.

To apply the Lax-Milgram type lemma provided by [0, Lemma 2.2], we need L; (1) = L; (1) for 11,19 € Hj# (1) /R

with 1 ~ 19, or it is equivalent to

/ Ri (um) (1 = 42) dy + / Vi (di (y) (Vatim + Vytim1)) (b1 — ¢2) dy = 0. (4.15)
Y1 Yl
Note that 11 — 19 is independent of y. Hence, (4.15) becomes
Vi (—di (49) (Vattim + Vytismer)) dy = / Ry (um) dy. (4.16)
Y1 Yi

For simplicity, we first take m = 0. Remind from (4.10) and (4.11) that u; o and u; ; are known, while the term R; (ug)

depends on x only, then one has

/ Vo (—d; (y) (=Y yxi Vs 0 + Vaiiso)) dy = V2| Ri (uo)
Y1

15



or equivalently,

Va (=di (y) (=Vyxi + 1) Vi) dy = [Y1| R; (uo) -
vy

Thus, if we set the homogenized (or effective) coefficient

1
G =777 | di(y) (=Vyxi + 1) dy,
Y1
the ;0 must satisfy (in the “almost all” sense)
—Va (¢:Vaiii0) = Y| V1| Ri (ug), inQ. (4.17)

On the other hand, it is associated with @; o = 0 at I'*** and still satisfies the ellipticity condition.

Let us now determine w; 5. At first, the PDE in (for m = 0) is given by
Aoui = Ri (wo) — d;i (y) VyxiVitio — Vy (di (y) xi) Vaiiso + di (y) Vaiio, in Y. (4.18)
Next, the boundary condition reads
—d; (y) Vyuiz -1 =b; (y) Fi (ui0) — a; (y) wio — di (y) X;iVaiio-n, ondYp.
Note that can be rewritten as
Aoui,z - Vy (di (y) Xiviﬂi,o) = Ri (uo) —d; (Z/) (VyXi - H) Viﬂi,o-
Using the relation , we have

Aouiz + Ao (xiVitig) = — Y| Y] Ve (Y aii0) — di (y) (Vyxi — 1) V2 0. (4.19)

x

Therefore, (4.19)) allows us to look for u; 5 of the form
i (,9) = 0; (y) Vi o, (4.20)
in which such a function 6; is the solution of the following problem
Ao (Vybi = xi) = — AT Y] g —di () (Vyxi — ), inY;,
—d; (y) (Vybi —x:) -n=b; (y) F; (ui0) — a; (y) i,  on dYy, (4.21)
0; is Y — periodic in y.

In conclusion, we have derived an expansion of u$ () up to the second-order corrector. In particular, we deduced that

uE (z) = @ () — X (E) Vs (z) + €26, (f) V2 (z) + O (%), weQF, (4.22)
€ €
where ;¢ can be solved by the microscopic problem (4.7]), x; satisfies the cell problem (4.12), and 6; satisfies the cell
problem (4.21)). Moreover, the homogenized equation is defined in (4.17)).
For the time being, it remains to derive the macroscopic equation from the PDE for u; 2 in (4.9) for m = 0. When
doing so, the following solvability condition has to be fulfilled:

/ (Ri (uo) — Aruiy — Aslisg) dy = / (bi (y) Fi (@,0) — @i (y) @0 + di (y) Vaug - 1) dSy. (4.23)
Y1 8YYO
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The left-hand side of (4.23) can be rewritten as
Yy Y Y1

Let us consider the last two integrals in (4.24). In fact, we have

wdi(y)vwai,o)czy:vm-[( di(y)dy> w]:( di<y>dy):vmvwai,o,

Y1 Y1 Yy

where we have used the inner product (or exactly, double dot product) between two matrices
A:B:=1tr (ATB) = Zaijbij.
ij
In addition, by periodicity and Gauf}’s theorem we obtain

vy (dl (y) vmuiJ) dy = d; (y) Vmum . IldSy
Y1 Yy
Next, employing the double dot product again, we get
/ Vo (di (y) Vyuin) dy = —/ (di (y) Vyxi) dy : Vi Vi .
Y1

Y1

Combining (4.23)), (4.25)-(4.27) yields the macroscopic equation:

(/Y (di (y) — di (y) Vyxi) dy) 2 VaValiio = (bi) Fi (i0) — (ai) @i — [Y1] Ri (uo) ,
where we have denoted by

@ = )y
/WO bi (y) dy.

135 Furthermore, this equation is associated with the boundary condition ;o = 0 at I'***.

—~
=

<7

~
Il

4.2. Corrector estimates. Justification of the asymptotics

(4.24)

(4.25)

(4.26)

(4.27)

From the point of view of applications, upper bound estimates on convergence rates over the space V¢ in terms of

quantitative analysis tells how fast one can approximate both u¢, the solution of systems (P¢), and Vu® by the asymptotic

expansion (4.22)). On the other hand, it also gives rise to the question that: how much information on data will we need

1o via such averaging techniques?

We introduce the well-known cut-off function m® € Cg° (§2) such that € |[Vm?®| < C and

1, ifdist(z,T') <e,
m(z) =
0, ifdist(z,T) > 2e.

For i € {1,..., N}, we define the function ¥$ by
TS =5 + (1 —m°) (Eui,l + 52ui72) ,

where we have denoted by

E e o€ 2
©; = U, — (ui,O +eu; +¢ ui72) .

17



Due to the auxiliary problems —, we have
A5 = R; (uf) — Ry (ug) — e (Asuiq + Arui2) — e Ao, x € QF, (4.28)
while on the boundary I'?, the function ¢ satisfies
—d; V95 - n=e2d;Vuia - n+e [a (w0 — uf) + 05 (Fi (uf) — Fi (uip))] - (4.29)
Rewriting the above information, the function ¢ satisfies the following system:

A5 = R; (uf) — R; (ug) + g5, in QF,
E (4.30)
—d; Va5 -n=¢e?hi -n+elf,  onl*,

where we have denoted by

£ e () ()0 ()
oo () () 2 (o ()
hi :=d; (E) 0; ( ) Vi,
5 :=a; (g) (Ti0 — us) + b (g) (Fz' (uf) — F; (ﬁi,o)) :

Now, multiplying the PDE in (4.30) by ¢; € V. for i € {1,..., N} and integrating by parts, we get that

(705, idye = (Ri(u®) = Ri(u0), i) 12 ey + € (95 0i) 12(0e)
_E<lf790i>L2(FE)_52/ hi - n@idSe. (4.31)
FE

To guarantee all the derivatives appearing in g¢ (up to higher order correctors), u; o, which is the solution to (4.17)), needs
to be smooth enough, says L (Q°) (cf. [24]), and the cell functions x; and 6; to (4.12) and (4.21]), respectively, belong

at least to H;& (Y1) as derived above. Consequently, it allows us to estimate g5 by an e-independent constant, i.e.
195 || p2(0ey < € forallie {1,..,N}. (4.32)
Furthermore, it is easily to estimate the integral including h{ in by the following (see, e.g. [6]):
/ RS -ndS. ~ Ce™ !,

which leads to
[|h; 'nHLZ(rs) < Ce V2, (4.33)

Now, it remains to estimate the third integral in (4.31)). Thanks to (As) and (4.6)), we may have

(15, 901'>L2(1‘a) <C (1 + Ri) l[ui — ﬂi,0||L2(re) H%’”L?(FE) : (4.34)

In the same vein, we get:

)<Rl (’LLE) - Rz (UO) , (pi>L2(Qa)

Combining ([4.31))-(4.35) with (A;) and putting L := max {I_/l, ...,EN} and K := 14 max {I_(l, ...,[_(N}7 we are led to

< CLi Juf = follye il zagae)- (435)

the estimate:
N

@Y (&5, pidy]

i=1

IN

C (LIl = olly +€) Iellye +C (K 10 = ollperey +%/2) Iellprey

IN

C (+72) Igllye < C/2 gy, (4.36)
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us  where we have made use of the trace inequality |||l ey < Ce=Y2|¢|,- and the Poincaré inequality [ellzaey < Cllellye-

Recall that our aim is to estimate || ¥#||,,., it remains to control the term <(1 —m°) (Eui,l + 82’[1/1"2) ,<pi>V5 for p; € Ve.
In fact, one easily has that

N

Z [{(1—m?) (eusn + e%u;2) "Pi>\/€

i=1

< Cel[V —m)llyyae ol

+O[[(1=m) V (eur + e®uz) |y e 1l
C (51/2 + 53/2) llellye < Cet/? lellye s (4.37)

IN

where we have used

||V(1 —mE)H?{(QE) <N (/ |vm5|2 d.%') < 08_1,
Q

en{z|dist(z,I)<2¢}

H(l —m®)V (euy + e%us)

IN

N52|QE|/ IVm®)? da
Qfﬂ{x\dist(z,F)SZS}

< (C&s.

2
e

Hence, by using the triangle inequality in (4.36)) and (4.37)) yields that

N
DK @iyl < G2 e

i=1
which finally leads to
1]y < Ce'2,

by choosing ¢ = We.

Summarizing, we can now state of the following theorem.

Theorem 10. Let u® be the solution of the elliptic system (P¢) with assumptions (A1) —(As) and (4.5)-(4.6) up to M = 2.
Suppose that the unique pair (ug, umy,) € W™ (QF) x W™ (QE; Hj, (Y1) /R) for m € {1,2}. The following corrector with

second order for the homogenization limit holds:

||u5 —ug —m° (Eul + agug)Hvs < CeY/?,

150 where ug,u; and ug are vectors whose elements are defined by (4.10)), (4.11) and (4.20)), respectively.

5. Discussion

In real-world applications, the nonlinear reaction term R; is often locally Lipschitz. However, relying on Lemma [3] the
L*>-type estimate of the positive solution makes the nonlinearity globally Lipschitz. For example, we choose N = 2 and

only consider the Ry (uy,us) = ujus — u3. We have
|Ry (u1,u2) — Ry (vi,v2)| < max {[[ua|l po s [Jurll oo + J01]l poe } (Jur — v1] + [u2 — v2]).
In addition, for M = 1 we compute that

Ry (u1,0 + €ur,1,u2,0 + €ug 1) = U1 oUzo + € (u1,1U2,0 + u1,0u2,1 — 2u1 oui,1) + O (52) . (5.1)
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Consequently, it follows from (5.1]) that

Ry Z €U m, Z €M ug m = Z e™ (1 —m)uouzo+ ,

me{0,1} me{0,1} me{0,1}

+m (ug 1u2,0 + u1 ou2,1 — 2u10u1,1)] + O (52) .

which implies R1 = (1 - m) U1,0U2,0 +m (U171u2,0 + Ur,0U2,1 — 2u170u171).

If W, Vi € L (Q2°) for all 4,m we thus arrive at

|R1 (Ul,O; U1,17U2,07U2,1) - Rl (U1,0, U1,1702,0,U2,1)| <L Z |uzm — Vi,m|
me{0,1},4€{1,2}

where L = 4max{||u2’0

ILOC(QE) ) HUI,O ‘LOO(QE) ) HULIHLoo(Qs) ) Hv2,l||Loo(Qa) ) Hul,O”Loo(Qs) al}

155 A similar discussion for the nonlinear surface rates F;. In particular, note that that if L> bounds are available (up to
the boundary) then also the exponential function F' (u) = e* can be treated conveniently.
We may repeat the homogenization procedure by the auxiliary problems — to obtain not only the general
expansion of the concentrations and corresponding problems, but also the higher order of corrector estimate due to the
up-based construction of u,,. Taking the M-level expansion into consideration, the general corrector can be found

1o easily. Indeed, by induction we have from (4.28) that for z € Q°

Acp; = Auj — 672/10%’,0 —e ! (Aou; 1 + A1)
M—2
- Z €™ (Aottim+2 + Artimi1 + A2tim)
m=0
—eM=Y (Ayui g + Asugar—1) — M Aqui
M-—2
= R;(u) - Z €™ R () — M (Avui v + Agui ar—1) — €M Agui g,
m=0
while (4.29) becomes

—d;V,5 -n= 5Mdfvzui’M +e

M-2 M—2
ai (Z ™ Uy — uf) + b5 <F (u$) — Z emF (uzm)>] .
m=0 m

=0
Thanks to the assumptions (4.5) and (4.6]), we are totally in a position to prove the generalization of Theorem

Since we just need to follow the above procedure, we shall give the following theorem while skipping the proof.

Theorem 11. Let u® be the solution of the elliptic system (P?) with assumptions (A1) — (43) and (4.5)-(4.6) up to
M-level of expansion. Suppose that the unique pair (ug,um) € W™ (2°) x W (QE;H%E (Y1) /R) for all0 <m < M.

The following correctors for the homogenization limit hold:

M
uf — Z S, <C (EM—l +5M—1/2) ,
m=0

VE
M M
€ € m < m—1/2
u® —ug —m ey, <C € .
m=1 Ve m=1
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