309 research outputs found

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    Creating a Worldwide Network For the Global Environment for Network Innovations (GENI) and Related Experimental Environments

    Get PDF
    Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world

    Bartolomeu: An SDN rebalancing system across multiple interdomain paths

    Get PDF
    Bartolomeu is a solution to enable stub networks to perform adaptive egress traffic load balancing across multiple interdomain routes by spreading the traffic across available paths according to a passive measurement of their performance. It defines a BGP-SDN architecture that increases the number of BGP routes that can be used by stub networks. Bartolomeu measures the available capacity of each path to any destination prefix, and allocates to each path a number of large flows that is proportional to its capacity. This strategy reduces the mean sojourn time, i.e., mean time to flow completion, compared to state-of-the-art traffic balancing techniques as ECMP. We develop a mathematical model to compute this time and compare with ECMP and single path (fast path) selection. An analysis of the traffic traces of two content providers was performed to ensure that our solution is deployable. An experiment with traffic exchange over the Internet is used to show that Bartolomeu can provide gains with real interfering traffic. A discrete-event simulator fed with the traces captured is used to asses Bartolomeu's gains with prefixes with different number of flows, and flows with different sizes and arrival time. We observe in this experiment that Bartolomeu can reduce the sojourn time, compared to ECMP, by half when path rates differ in a factor of 3, or to a sixth when path rates differ in a factor of 10. We compute the maximum number of per-flow entries and the maximum entry change request rate to show that the resources required fit in with the specifications of the current generation of SDN switches.The work of Pedro Rodrigues Torres-Jr. was partially supported by the FundaciĂłn Carolina, program Mobilidad SEGIB 2019. The work of Alberto GarcĂ­a-MartĂ­nez was supported by the 5G-TRANSFORMER project, H2020-761536. The work of and Marcelo Bagnulo was supported in part by the 5G-TRANSFORMER project, and by the Spanish Ministry of Economy and Competitiveness under 5GCity project, TEC2016-76795-C6-3-R
    • …
    corecore