5 research outputs found

    Robust MIMO Channel Estimation from Incomplete and Corrupted Measurements

    Get PDF
    Location-aware communication is one of the enabling techniques for future 5G networks. It requires accurate temporal and spatial channel estimation from multidimensional data. Most of the existing channel estimation techniques assume that the measurements are complete and noise is Gaussian. While these approaches are brittle to corrupted or outlying measurements, which are ubiquitous in real applications. To address these issues, we develop a lp-norm minimization based iteratively reweighted higher-order singular value decomposition algorithm. It is robust to Gaussian as well as the impulsive noise even when the measurement data is incomplete. Compared with the state-of-the-art techniques, accurate estimation results are achieved for the proposed approach

    Tensor Decomposition Based Beamspace ESPRIT for Millimeter Wave MIMO Channel Estimation

    Get PDF
    We propose a search-free beamspace tensor-ESPRIT algorithm for millimeter wave MIMO channel estimation. It is a multidimensional generalization of beamspace-ESPRIT method by exploiting the multiple invariance structure of the measurements. Geometry-based channel model is considered to contain the channel sparsity feature. In our framework, an alternating least squares problem is solved for low rank tensor decomposition and the multidimensional parameters are automatically associated. The performance of the proposed algorithm is evaluated by considering different transformation schemes

    An Iterative Reweighted Method for Tucker Decomposition of Incomplete Tensors

    No full text
    corecore