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Abstract—Location-aware communication is one of the en-
abling techniques for future 5G networks. It requires accurate
temporal and spatial channel estimation from multidimensional
data. Most of the existing channel estimation techniques assume
that the measurements are complete and noise is Gaussian.
While these approaches are brittle to corrupted or outlying
measurements, which are ubiquitous in real applications. To
address these issues, we develop a �p-norm minimization based
iteratively reweighted higher-order singular value decomposition
algorithm. It is robust to Gaussian as well as the impulsive noise
even when the measurement data is incomplete. Compared with
the state-of-the-art techniques, accurate estimation results are
achieved for the proposed approach.

I. INTRODUCTION

Location-aware communications are the promising tech-

nologies for 5G networks [1]. Extensive research has been

carried out to tackle the technical challenges. While accurate

temporal and spatial channel state information are critical to

fulfill these requirements and obtain the location information

[2]. Numerous channel estimation techniques have been de-

veloped, cf. [3], [4] for overviews. In the presence of white

Gaussian noise and complete measurements, optimum perfor-

mance is obtained for the maximum-likelihood (ML) estimator

[5]. However, the computational load is heavy due to the

multi-dimensional search. Statistically efficient strategies such

as method of direction estimation (MODE) [5] and iterative

quadratic ML (IQML) [6] algorithms have been proposed to

reduce the computational complexity. Alternatively, subspace

method achieves a good balance between complexity and

estimation accuracy. Representative subspace methods include

multiple signal classification (MUSIC) [7], estimation of signal

parameters via rotational invariance technique (ESPRIT) [8],

matrix pencil (MP) [9], MODE and principal-singular-vector

utilization for modal analysis (PUMA) [10].

Massive MIMO generates massive amounts of multidimen-

sional channel data with multiple aspects. It is convenient

and natural to represent the dominant multipath components

from MIMO channel measurements using tensors, because

they are inherently organized in R-D structure [11]. As an

emerging technology, tensors provide a natural and compact

representation for such massive multidimensional data via

suitable low-rank approximations. Instead of unfolding tensor

into matrices and using matrix factorization techniques, tensor

models preserve the multi-way structure of the data. Tensor

decomposition becomes a powerful technique to capture the

intrinsic multi-dimensional structure of the multi-way data.

Tucker [12] and CANDECOMP/PARAFAC [13] are two pop-

ular models for tensor decomposition. Tensor factorization has

emerged as an important method for information analysis [14],

[15]. With the development of tensor decomposition, subspace

methods are extended to their multi-dimensional variants such

as tensor-MUSIC [16], tensor-ESPRIT [14], unitary tensor

ESPRIT [14], tensor-MP [17], tensor-PUMA [18], tensor-

MODE [19], multi-dimensional folding (MDF) [20], or the

R-D rank reduction estimator (RARE) [11]. Two eigenvector-

based frequency estimators tensor eigenvector (TEV) and

its variant with forward-backward averaging (FB-TEV) are

proposed in [21].

In practice non-Gaussian noise is ubiquitous [22], such as

the impulsive noise [23]. The performance of the existing �2-
norm minimization based subspace techniques may severely

degrade in presence of impulsive noise. To eliminate the

adverse effects, �1-norm minimization based robust model

fitting algorithms such as [24] can be used. Recently, �p-
MUSIC is derived in [25] and its tensor version [26], which

adopts the �p-norm of the fitting error matrix or tensor as

the objective function to minimize. The underlying idea is

to transform the �p-norm minimization to an iterative �2-
norm minimization. Besides non-Gaussian noise, incomplete

measurements make the R-D channel estimation problem more

challenging. It might be caused by errors or faults in the

process of data transmission, or utilizing low cost irregu-

lar sampling schemes [27]. Robust multidimensional channel

estimation from incomplete and corrupted measurements is

critical and challenging [28], [29].

To address these challenges, in this paper, we focus on

robust R-D channel estimation for MIMO systems from in-

complete and corrupted measurements. Our contributions are

as follows:
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• We first formulate robust multidimensional channel es-

timation as a tensor recovery problem. Our aim is to

recover the low rank component Lo and error component

E0 from complete or incomplete tensor measurements

X = Lo + Eo by optimization,

min
L,E

‖L‖∗ + λ‖E‖p, s.t. X = L+ E , (1)

where λ is a positive weighting parameter. Under this

framework, robustness to Gaussian noise is achieved

when p = 2 is adopted [30]. In the presence of outliers

or corrupted measurements, 0 < p < 2, can be utilized

[31]. Robust principal component analysis algorithm is

obtained by setting p = 1 [32]. Alternating direction

method of multipliers (ADMM) algorithms can be ap-

plied to solve (1) [33]. Tensor decomposition is applied

on Lo, after obtaining the subspace, the existing subspace

algorithms can be utilized for channel estimation.

• We develop an incomplete iteratively reweighted HOSVD

(i-IR-HOSVD) algorithm for robust multidimensional

channel estimation from partial observation and in impul-

sive noise environments. Inspired by the tensor comple-

tion technique, the main idea is minimizing the �p-norm
of the residual error and recovering the low rank tensor

measurements at the same time. It can be applied for

robust higher-order tensor decomposition from corrupted

and incomplete measurements.

The remainder of this paper is organized as follows. In

Section II, the background introduction and problem for-

mulation are provided. In Section III, we present the i-IR-

HOSVD. Numerical examples are included to demonstrate the

effectiveness of the proposed algorithm in Section IV. Finally,

conclusions are drawn in Section V.

II. BACKGROUND AND PRELIMINARIES

Notation: We use (·)H , (·)∗ and (·)−1 to denote Hermitian

transpose, complex conjugate and matrix inverse, respectively.

Nuclear norm and �p-norm are denoted as ‖ · ‖∗ and ‖ · ‖p,
respectively. The set of unitary matrices of size m × n
is denoted as Om×n. In this paper, we follow the tensor

operations defined in [34]. The (i1, i2, · · · , iR) entry of two R-

D tensors A and B are denoted as ai1,i2,··· ,iR and bi1,i2,··· ,iR ,
respectively. Scalar product of two tensors is defined as

< A,B >=
∑
i1

∑
i2

· · ·
∑
iR

b∗i1,i2,··· ,iRai1,i2,··· ,iR . (2)

[A](r) denotes the rth unfolding of A. IR
k ∈ RJ×J×···×J

is a R-D tensor whose (j, j, · · · , j) entry equals one and

zero otherwise, j = 1, 2, · · · , J . The product of a tensor

A ∈ CI1×I2×···×IR and a matrix U ∈ CJr×Ir along the rth
dimension is denoted by A ×r U, it is an (I1 × I2 × · · · ×
Ir−1×Jr×Ir+1×· · ·×IR)-tensor and the entries are defined

as

(A×r U)i1,i2,··· ,ir−1,jr,ir+1,··· ,iR
=

∑
ir

ai1,i2,··· ,ir−1,ir,ir+1,··· ,iRujr,ir . (3)

The Frobenius norm of a tensor A is written as

‖A‖F =
√

< A,A >. (4)

A. System Model

The entries of multipath channel measurement X are given

by

xm1,m2,··· ,mR,n =
L∑

l=1

γl(n)
R∏

r=1

ejωr,lmr + vm1,m2,··· ,mR,n

(5)

where mr = 1, 2, · · · ,Mr, r = 1, 2, · · · , R, n = 1, 2, · · · , N ,

l = 1, 2, · · · , L and vm1,m2,··· ,mR,n denotes the noise com-

ponent. The R and N denote the numbers of dimensions and

snapshots, respectively. Numbers of frequencies L is known.

ωr,l ∈ (−π, π) are the unknown R-D channel parameters to

be estimated. γl(n) denotes the complex amplitude of the lth
tone at the nth snapshot. The tensor dimension is R+1 together
with the snapshots.

According to (5), X can be written as

X ≈ IR+1
L ×1 A1 ×2 A2 · · · ×R+1 AR+1, (6)

where for r = 1, 2, · · · , R,

Ar =
[
ar,1 ar,2 · · · ar,L

] ∈ CMr×L (7)

with ar,l =
[
ejωr,f ej2ωr,f · · · ejMrωr,l

]T
, while

AR+1 =
[
aR+1,1 aR+1,2 · · · aR+1,L

] ∈ CN×L (8)

with aR+1,l =
[
γl(1) γl(2) · · · γl(N)

]T
.

For MIMO systems with NT transmit and NR receive

antennas, the steering vectors a(θ, ϕ) = aaz(θ) ⊗ ael(ϕ) are
functions of both the azimuth angle θ and elevation angle ϕ. In
general, the frequency domain channel response of a MIMO

channel with Np paths can be described as

H(t, f) =

Np∑
�=1

α�e
j2π(v�t−τ�f)aR(θR,�, ϕR,�)a

∗
T (θT,�, ϕT,�),

(9)

where for each path �, it is described by direction of arrival

(θR,�, ϕR,�), direction of departure (θT,�, ϕT,�), delay τ�, com-

plex gain α� and Doppler shift v� [35].

B. Problem Formulation

Our target is estimating R-D channel parameters from com-

plete or incomplete noisy tensor measurements. For HOSVD,

it decomposes a given tensor X into a core tensor C multiplied

by a factor matrix Ur along each mode r as follows:

X = C ×R
r=1 Ur (10)

where C ∈ CJ1×J2×···×JR , Ur ∈ CIr×Jr , and ×r denotes the

mode-r tensor-matrix multiplication. Since Jr is in general

much smaller than Ir, the core tensor C can be though of as

a low rank version of X .



With complete measurements X , the higher-order orthog-

onality iteration (HOOI) algorithm [12] solves the following

Frobenius norm minimization problem,

min
C,U

∥∥C ×R
r=1 Ur −X

∥∥2
F

s.t. Ur ∈ OIr×Jr , r = 1, 2, · · · , R,
(11)

where Ur has orthonormal columns for all Jr.
Assuming that the measurements are incomplete, which is

denoted as M. Then iHOOI [36] algorithm is formulated as:

min
C,U

∥∥PΩ

(C ×R
r=1 Ur −M

)∥∥2
F

s.t. Ur ∈ OIr×Jr , r = 1, 2, · · · , R.
(12)

where Ω is the observed entry index, PΩ is a projection

operator that keeps the entries in Ω and zeros out others [37].

Recently, a �p-norm minimization based IR-HOSVD algo-

rithm is proposed in [26]. It solves the following optimization

problem,

min
C,U

∥∥C ×R
r=1 Ur −X

∥∥p
p

s.t. Ur ∈ OIr×Jr , r = 1, 2, · · · , R,
(13)

where ‖ · ‖p denotes the element wise �p-norm. IR-HOSVD is

robust to the complete measurements with outliers. While it

can not handle the incomplete measurements. To address the

issue, incomplete IR-HOSVD (i-IR-HOSVD) is proposed.

III. PROPOSED INCOMPLETE IR-HOSVD METHOD

In this section, we consider robust R-D channel estimation

from incomplete measurements with impulsive noise. It is well

known that the �2-norm minimization based approaches such

as HOOI and iHOOI are not robust to the corrupt data with

outliers. Replacing the squared residuals by �p-norm is one of

the commonly used candidates to deal with the impulsive noise

[38] . For example, �1-norm minimization based algorithm has

been studied in [24].

Given incomplete measurement M, i-IR-HOSVD solves

the following �p-norm minimization problem,

min
C,U

∥∥PΩ

(C ×R
r=1 Ur −M

)∥∥p
p

s.t. Ur ∈ OIr×Jr

(14)

Introducing an auxiliary variable X , (14) is reformulated as

min
S,U,X

∥∥C ×R
r=1 Ur −X

∥∥p
p

s.t. PΩ(X ) = PΩ(M) and Ur ∈ OIr×Jr

(15)

For r = 1, 2, · · · , R, the �p-norm based objective function

is reformulated as

Jr(X ,Pr,Qr) =
∥∥X[r] −PrQr

∥∥p
p
. (16)

Instead of directly minimizing the �p quasi-norm, which

most likely ends up with one of its many local minimizers, re-

weighted �1/�2 algorithms were proposed to solve a sequence

of smoothed subproblems [39], [40].

The residual error matrix of the rth dimension is defined as

Δ(k)
r = X (k)

[r] −P(k)
r Q

(k)
r , (17)

with δ
(k)
rm,n be the (m,n) entry . Its �p-norm minimiza-

tion problem can be expressed as an equivalent iteratively

reweighted Frobenius norm minimization problem,

J (k)
r =

∥∥∥W(k)
r ◦X[r] −W(k)

r ◦
(
P(k)

r Q
(k)
r

)∥∥∥2
2
, (18)

where Wr is the weighting matrix, and its (m,n) entry is

defined as

w(k)
m,n =

⎧⎨
⎩
(∣∣δ(k)rm,n

∣∣+ ε
)(p−2)/2

, if (m,n) ∈ Ω
0, if (m,n) /∈ Ω

(19)

where ε > 0 being a regularization parameter to ensure that

w
(k)
m,n is well defined [41] and w

(0)
m,n = 1.

Let

G(k)
r =W(k)

r ◦X[r]. (20)

Note that Wr is a function of Pr and Qr. We cannot

immediately obtain the optimal solution by performing SVD

on Gr only once. As the IR-HOSVD algorithm in [26], an

iterative procedure is adopted to solve the problem.

The global minimum of (18) is obtained via the truncated

SVD of G
(k)
r [42]:

G(k)
r = U(k)

r Σ
(k)
r

(
V(k)

r

)H

, (21)

where U
(k)
r ∈ C

Ir×Jr contains the first Jr principal left

singular vectors of G
(k)
r . The global optima of P

(k)
r and Q

(k)
r

are given by [42]:

P(k+1)
r = U(k)

r , Q(k+1)
r = Σ(k)

r

(
V(k)

r

)H

. (22)

With available U(k+1), X (k+1) is recovered as

X (k+1) = PΩ(M)

+PΩc

(
X (k) ×R

r=1 U
(k+1)
r

(
U(k+1)

r

)H
)
, (23)

where Ωc is the absolute complement of Ω.
The Algorithm is terminated if they reach the maximum

number of iterations [37]. If stopping criterion is satisfied,

then return U
(k)
r for r = 1, 2, · · · , R. The pseudocode of the

proposed i-IR-HOSVD algorithm is summarized in Algorithm

1.

After obtaining U
(k+1)
r for all r, and X (k+1), ESPRIT can

be used to estimate the R-D parameters.

A comparison of the introduced four algorithms is given in

Table I. IR-HOSVD [26] is a special case of i-IR-HOSVD,

provided that the observation is complete. Meanwhile, iHOOI

[37] is obtained by specifying �p-norm to Frobenius norm.

Furthermore, HOOI [12] is obtained by setting �p-norm to

Frobenius norm and the data is complete.



Algorithm 1: Incomplete IR-HOSVD

Initialize PΩ(X (0)) = PΩ(M)
for r = 1, 2, to R do

Initialize P
(0)
r , Q

(0)
r and W

(0)
r .

end
for k = 0, 1, to max do
for r = 1, 2, to R do

Construct mode-r unfolding X (k)
[r] .

Compute Δ
(k)
r using (17).

Compute W
(k)
r using (19).

Update P
(k+1)
r and Q

(k+1)
r using (22).

end
Update X (k+1) by (23).

if terminated then
Return X (k+1) and U(k+1).

end
end

TABLE I
A COMPARISON OF TENSOR DECOMPOSITION AND COMPLETION METHODS

Complete Data Incomplete Data
Frobenius norm HOOI [12] iHOOI [37]

�p-norm IR-HOSVD [26] i-IR-HOSVD

IV. SIMULATION RESULTS

We consider the following system setup. Base station is

equipped with a uniform rectangular array (URA) with (M1×
M2) elements and mobile node is equipped with a uniform

linear array (ULA) with M3 elements. The coordinate of the

(m1,m2)-th and m3-th antenna elements are (λ2m1, 0,
λ
2m2)

and (λ2m3, 0, 0) in three dimensional Cartesian coordinate

systems, where λ is the wavelength of the carrier frequency.

The origin is the array reference point. Here we evaluate

the performance of the proposed approach in the presence of

impulsive noise and incomplete measurements. It is evaluated

in terms of the root mean square error (RMSE). For each

snapshot, the data set dimension is (16 × 16 × 16), that is,
M1 = M2 = M3 = 16, and N = 5 snapshots are collected.

The RMSE performance is obtained by averaging over all the

number of sources and 100 independent runs. Tensorlab is

used for tensor computations [43].

The three unknown channel parameters (θR, ϕR, ϕT ) are

(6◦, 17◦, 53◦), (30◦, 53◦, 24◦) and (37◦, 30◦, 12◦). Generalized
Gaussian (GG) model is one of the widely used distributions,

that can well model the phenomenon in the presence of both

Gaussian thermal noise and outliers. As shown in Fig. 1, the

PDF of GG [44] in terms for different shape parameter β,
mean μ = 0 and standard deviation σ = 1. Impulsive noise

can be described by setting shape parameter to 1 < β < 2 and
Gaussian noise is obtained for β = 2. Here GG noise mode

is used to describe the impulsive noise. Sample ratio (SR)

is utilized to describe the data completeness. For example,

SR = 0.8 means that 20% of the entries are missing and

they are randomly chosen along all the dimensions with equal

probability. Channel estimation using complete measurements

(SR = 1) is chose as the benchmark to compared with.
The proposed i-IR-HOSVD algorithm is compared with

T-ESPRIT [14], TEV and TEV-FB [21]. Since T-ESPRIT,

TEV and TEV-FB are developed for complete measurements,

the missing measurements are assigened to zero. Maximum

number of iterations is 50. Fig. 2-4 show the RMSE results

versus signal-to-noise ratio (SNR) in the presence of GG noise

by considering different shape parameters β = 0.4, β = 1 and
β = 1.6. For the proposed i-IR-HOSVD algorithm, p = 1 is

used. We observe that it outperforms the other three �2-norm
minimization based methods. Angles are estimated accurately

in the presence of impulsive noise and incomplete channel

measurements.
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Fig. 1. Probability density function of generalized Gaussian distribution with
different shape parameter β.

5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

10
1

10
2

SNR (dB)

R
M

S
E

 (
d
e
g
re

e
)

T−ESPRIT

TEV

TEV−FB

i−IR−HOSVD

Fig. 2. RMSE of angle versus SNR, data dimension is (16×16×16), number
of measurements N = 5, SR = 0.8 and β = 0.4.

V. CONCLUSION

We propose an i-IR-HOSVD algorithm for robust multi-

dimensional channel estimation from partial observation and
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of measurements N = 5, SR = 0.8 and β = 1.
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Fig. 4. RMSE of angle versus SNR, data dimension is (16×16×16), number
of measurements N = 5, SR = 0.8 and β = 1.6.

in impulsive noise environments. Inspired by the tensor com-

pletion technique, the key idea is to minimize the �p-norm
of the residual error instead of �2-norm and recover the low

rank tensor measurements at the same time. i-IR-HOSVD can

be applied for robust higher-order tensor decomposition from

crossly corrupted and incomplete measurements. It achieves

accurate channel estimation performance in impulsive noise

environments, even with incomplete measurements.

ACKNOWLEDGMENT

This work is sponsored by the State Key Laboratory of

Automotive Safety and Energy under Project No. KF1804 and

the European Union’s Horizon 2020 research and innovation

programme under the Marie Sklodowska-Curie grant agree-

ment No. 700044. It is partially supported by Science and

Technology Innovation Project of Shaanxi Province (Grant No.

2016KTZDGY04-01).

REFERENCES

[1] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 186–195, 2014.

[2] R. Shafin, L. Liu, J. Zhang, and Y.-C. Wu, “DoA estimation and capacity
analysis for 3-D millimeter wave massive-MIMO/FD-MIMO OFDM
systems,” IEEE Transactions on Wireless Communications, vol. 15,
no. 10, pp. 6963–6978, Oct. 2016.

[3] X. Liu, N. D. Sidiropoulos, and T. Jiang, Space-Time Processing for
MIMO Communications. NY: Wiley, 2005, ch. 2. Multidimensional
harmonic retrieval with applications in MIMO wireless channel sound-
ing, pp. 41–75.
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