10 research outputs found

    Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training

    Get PDF
    In this paper, we introduce a new perspective on training deep neural networks capable of state-of-the-art performance without the need for the expensive over-parameterization by proposing the concept of In-Time Over-Parameterization (ITOP) in sparse training. By starting from a random sparse network and continuously exploring sparse connectivities during training, we can perform an Over-Parameterization in the space-time manifold, closing the gap in the expressibility between sparse training and dense training. We further use ITOP to understand the underlying mechanism of Dynamic Sparse Training (DST) and indicate that the benefits of DST come from its ability to consider across time all possible parameters when searching for the optimal sparse connectivity. As long as there are sufficient parameters that have been reliably explored during training, DST can outperform the dense neural network by a large margin. We present a series of experiments to support our conjecture and achieve the state-of-the-art sparse training performance with ResNet-50 on ImageNet. More impressively, our method achieves dominant performance over the overparameterization-based sparse methods at extreme sparsity levels. When trained on CIFAR-100, our method can match the performance of the dense model even at an extreme sparsity (98%). Code can be found https://github.com/Shiweiliuiiiiiii/In-Time-Over-Parameterization.Comment: 16 pages; 10 figures; Published in Proceedings of the 38th International Conference on Machine Learning. Code can be found https://github.com/Shiweiliuiiiiiii/In-Time-Over-Parameterizatio

    Review of graph-based hazardous event detection methods for autonomous driving systems

    Get PDF
    Automated and autonomous vehicles are often required to operate in complex road environments with potential hazards that may lead to hazardous events causing injury or even death. Therefore, a reliable autonomous hazardous event detection system is a key enabler for highly autonomous vehicles (e.g., Level 4 and 5 autonomous vehicles) to operate without human supervision for significant periods of time. One promising solution to the problem is the use of graph-based methods that are powerful tools for relational reasoning. Using graphs to organise heterogeneous knowledge about the operational environment, link scene entities (e.g., road users, static objects, traffic rules) and describe how they affect each other. Due to a growing interest and opportunity presented by graph-based methods for autonomous hazardous event detection, this paper provides a comprehensive review of the state-of-the-art graph-based methods that we categorise as rule-based, probabilistic, and machine learning-driven. Additionally, we present an in-depth overview of the available datasets to facilitate hazardous event training and evaluation metrics to assess model performance. In doing so, we aim to provide a thorough overview and insight into the key research opportunities and open challenges
    corecore