
warwick.ac.uk/lib-publications 

Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 

Persistent WRAP URL: 
http://wrap.warwick.ac.uk/173424 

How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 

Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  

Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 

Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 

Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/159742
mailto:wrap@warwick.ac.uk


 
 
 

1

Abstract— Automated and autonomous vehicles are often 
required to operate in complex road environments with potential 
hazards that may lead to hazardous events causing injury or even 
death. Therefore, a reliable autonomous hazardous event 
detection system is a key enabler for highly autonomous vehicles 
(e.g., Level 4 and 5 autonomous vehicles) to operate without 
human supervision for significant periods of time. One promising 
solution to the problem is the use of graph-based methods that are 
powerful tools for relational reasoning. Using graphs to organise 
heterogeneous knowledge about the operational environment, link 
scene entities (e.g., road users, static objects, traffic rules) and 
describe how they affect each other. Due to a growing interest and 
opportunity presented by graph-based methods for autonomous 
hazardous event detection, this paper provides a comprehensive 
review of the state-of-the-art graph-based methods that we 
categorise as rule-based, probabilistic, and machine learning-
driven. Additionally, we present an in-depth overview of the 
available datasets to facilitate hazardous event training and 
evaluation metrics to assess model performance. In doing so, we 
aim to provide a thorough overview and insight into the key 
research opportunities and open challenges.  

 
Index Terms— Hazardous event, graph neural networks, 

Bayesian networks, rule-based ontologies, automated vehicles. 

I. INTRODUCTION 

n estimated 83% to 94% of traffic accidents are related to 
human fault [1], [2]. Thus, progressively more driving 

functions are being automated to improve safety and efficiency. 
However, due to the complex driving domain, current 
automated vehicle (AV) systems: have limited functionality 
(e.g., adaptive cruise control and lane change), are restricted to 
specific operating conditions defined by an operational design 
domain (ODD) and require constant human supervision.  

Current systems are classified as Level 2 automation by the 
Society of Automotive Engineers (SAE) [3], and the ultimate 
goal is to transition from human supervised automation to 
unsupervised autonomy for all driving functions in any ODD 
(SAE Level 5). A key enabler to transition past SAE Level 2 
systems is the ability to reliably and comprehensively detect 
scenarios that may cause harm or when the system can no 
longer safely function, which are classified as hazardous events 
and defined in section II.A together with other key terms.  

To detect hazardous events, AV systems must process a vast 
amount of perception data (e.g., object detection, classification 
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and localisation), which can be noisy, uncertain or incomplete, 
in order to identify potential events that may materialise harm. 
However, achieving early and robust hazardous event detection 
remains challenging due to an unlimited variety of edge cases, 
unseen environments, and the driving domain's overall 
complexity [4]–[7]. Aggravated by the fact that it is impossible 
to define all hazardous events manually, a scalable approach is 
vital to adapt in an ever-changing domain.  

Regarding road safety, human behaviour plays a pivotal role 
but is complex to predict as it is affected by interactions with 
other actors (i.e., surrounding road users like vehicles and 
pedestrians) and the environment. With 83-94% of accidents 
linked to human fault [1], [2], understanding such interactions 
is vital to enable the transition to SAE Level 3+, where AVs 
will need to safely control all driving functions. Historically, 
kinematic and physics-based methods have been proposed to 
predict colliding trajectories [8], however, such methods can 
not describe the frequent interactions between road users that 
cause drivers to suddenly alter trajectories (e.g., lane change). 

In response, deep learning models have been proposed that 
utilise both convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs) [9]–[11] to detect hazardous 
events from dashboard video footage. Images are parsed with a 
CNN to extract spatial features, like the location and 
appearance of objects in the image and then fed to the RNN to 
extract temporal features such as how spatial features evolve in 
time. Despite great advances from CNNs, unguided learning 
may draw spurious patterns [12]–[14]. In addition, spatial 
features may omit vital contextual relations that are not 
observable [15]–[17].  

The lack of relational reasoning of the aforementioned 
methods has given rise to graph-based methods. Such methods 
allow scene entities to be represented as vertices (i.e., nodes) 
and related through edges to decompose a complex event into 
constituent components (e.g., road users, environment and 
traffic rules) and reason how components affect each other. Not 
all hazardous events can be directly observed, but through 
graph-based learning, authors have proposed the contextual 
inference needed to distinguish simple road debris from a 
football that may signal a child running onto the road to retrieve 
it [18], or context to foresee a loss of control from sharp turns 
by relating the curve radius, speed and max deceleration [19].  
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In the context of deep learning models, graph-based neural 
networks have been used to learn hazardous lane changes and 
collision scenes, and demonstrate 16-30% higher accuracy [20], 
[21], 39-62% earlier prediction [20], [22], and up to 9 times 
faster inference time [20] compared to non-graph counterparts. 
However, it is important to note the strength of graphs to encode 
relational dependencies also brings limitations as researchers 
must manually define the structure and scene features to 
sufficiently represent the problem. Thus, creating abstractions 
that may miss patterns unknown by current human 
understanding. Nevertheless, given the potential of graph-based 
methods, the area remains under-explored. To contribute to this 
gap, this review takes a novel focus on graph-based methods to 
facilitate relational reasoning. 

The topic of hazardous event detection for AVs has been 
covered by several reviews and survey articles in the literature 
[8], [23]–[27], although works focus on non-graph methods. In 
the early works of [25], hazardous event detection methods are 
surveyed for early collision avoidance systems, which use 
vehicle detections and distance measurements. This was 
followed by more advanced methods in a later review [8], 
which categorised methods by how actor motion was predicted 
to forecast colliding trajectories or match hazardous behaviour 
patterns. The key categorisation made by [8], clearly divided 
the landscape of methods into deterministic physics-based, 
probabilistic manoeuvre-based and machine learning (ML).  

The review in [8] also exemplifies a common limitation: 
reviews lack coverage on methods that can represent the earlier 
described actor, environment and regulatory relationships that 
underpin vehicle behaviour and help explain scene evolution. 
Usage of graph-based methods to represent such relationships 
has increased organically and are covered in the more recent 
reviews of [27], but remain brief and are limited to Bayesian 
networks, which allow variable relationships to be defined. 

Moreover, existing reviews of the literature have restricted 
domain coverage and primarily review vehicle-based hazards 
and omit other hazard classes, such as environment (e.g., 
adverse weather, visibility) or traffic laws (e.g., speeding, 
illegal manoeuvre). Incomplete coverage limits real-world 
usage as it does not cover the variety or complexity in the 
driving domain, exemplified at intersections, which remain the 
highest site of AV incidents [28], [29].  

To the best of the author's knowledge, related survey and 
review papers also do not cover the datasets to train such 
methods or the evaluation metrics to assess performance.  

Motivated by the above gaps in the literature, this review 
aims to focus on graph-based methods for hazardous event 
detection. We present the opportunity of using graphs to 
decompose a complex operational environment, organise 
heterogeneous knowledge about the environment and represent 
relationships between scene entities (e.g., road users, static 
objects, traffic rules).  

To this end, this research contributes a comprehensive 
literature review of graph-based hazardous event detection 
methods, evaluation metrics and datasets for training and 
evaluation. As such, the contributions of this review paper are:  

 Comprehensive categorisation scheme of hazard classes 
 Unique categorisation and focus on graph-based 

methodologies for hazardous event detection 
 Thorough overview of hazard-focused datasets  

 Thorough overview of model performance metrics  
 Highlight of key gaps and opportunities within the area 

 
Section I outlines the paper's focus and rationale. Section II 

defines key terms and concepts of hazardous event detection. 
Section III, comprises a focused literature review of key graph-
based methods, performance metrics and datasets to train and 
test methods. Section IV then evaluates the advantages and 
limitations of each method and assesses opportunities for future 
research. Finally, Section V, concludes with our key findings.   

II. HAZARDOUS EVENT DETECTION  

This section presents the key terminology used in the field 
and is tabulated in TABLE I. Followed by important background 
concepts of hazardous event: lifecycle, categorisation scheme 
and detection in the context of the AV pipeline. 

A. Key Terminology 

To define the terms used in this research, we present key 
terms in TABLE I and follow the convention BSI 1890 [30], a 
vocabulary standard for automated vehicles and ISO 21448 
[31], which covers safety standards of road vehicle systems due 
to external factors. We note that we concentrate on safety 
assessment at runtime operation, and though this standard 
applies to system assessment, the definitions are still applicable 
and consistent with related safety standards [32], [33]. 

Starting with the formal definition of hazard, it is any 
"potential source for harm" [31]. In systems engineering, this 
source is from the system under test, but in our context, we 
focus on external factors (e.g., other road users or roadside 
debris) that can cause harm in the form of physical injury or 
damage to property. Specifically, we focus on naturalistic 
external hazards without malicious intent. Examples include 
actor-based hazards (e.g., vehicles, pedestrians), environmental 
(e.g., adverse weather), and regulatory traffic laws.  

However, a hazard alone does not materialise harm. Instead, 
hazardous events combine a hazard with an operational 
situation that realises harm [31]. For example, an icy road alone 
does not cause harm unless combined with a loss of control 
scenario that materialises harm by causing a collision. In the 

TABLE I.  KEY TERMS, BSI 1890 [30] AND ISO 21448 [31] 

Term Definition 

Hazard Potential source of harm [31]. 

Hazardous 
Event 

Combination of a hazard and the operational situation 
of the vehicle [31]. 

Hazard 
Detection 

Identification of hazardous events. 

Hazardous 
Event 

Analysis 

Method to identify and categorise hazardous situations 
and their triggering events to prevent or mitigate harm. 

Triggering 
Event 

Specific conditions of a driving scenario that serve as 
an initiator leading to a hazardous event [31]. E.g., 
known hazardous environmental conditions or 
exceeding the limitations of system components [31]. 

Scenario 
Description of the temporal development between 
several scenes in a sequence of scenes [30] [31]. 

Scene 
Snapshot of the environment including scenery, 
dynamic elements, all actors and their relations [31]. 

Ego Vehicle 
(EV) 

Subject vehicle of primary interest in testing, trialling 
or operational scenarios [30]. 

Risk The product of likelihood and severity [31]. 
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previous definition, the term scenario refers to the time-based 
(i.e., temporal) development of a sequence of scenes. The scene 
describes the driving environment of actors, elements and 
scenery.  The term actor refers to other roads users surrounding 
the subject vehicle, called the ego vehicle (EV). Furthermore, 
as hazardous event detection is a precursor for risk assessment, 
these terms are not well differentiated in the literature. Hazards 
are potential sources of harm, whereas risk is the evaluation of 
a hazardous event in terms of likelihood and severity. 

It is vital for hazardous event detection to detect as early as 
possible while there is time to act; thus, we must identify the 
causal factors that initiate a hazardous event. Correlation is not 
causation, and it is the triggering events that need to be 
identified for early detection.  

 

B. Hazardous Event Lifecycle  

It is important to note that a hazard by itself does not 
materialise harm. Harm is only realised when a hazard is 
combined with a driving scenario that materialises the harm. 
Such scenarios are classed as hazardous events and can be 
defined in a lifecycle that highlights the importance, but 
difficulty of early detection as future evolution must be 
predicted accurately in a complex and dynamic domain. The 
lifecycle is based on the literature [18], [34], [35] and adopted 
by the UK Driver and Vehicle Licensing Agency [36]. We 
define the stages below and exemplify them in Fig. 1. 

 Potential Hazardous Event: Current scene does not 
pose immediate harm but may develop into a scenario 
that may cause harm 

 Developing Hazardous Event: Current scene is 
developing into a situation that can cause harm if 
intervention is not taken soon 

 Materialised Hazardous Event: Harm realised 

As the hazardous event evolves, the detection stage evolves 
with the event. Beginning with early detection, then imminent 
detection, which requires immediate intervention to avoid harm 
and ends with post-detection, after harm is realised.  

To illustrate the lifecycle, we present realistic examples that 
demonstrate the importance but difficulty of early detection as 
systems require a causal understanding of the triggering event. 

Fig. 1 shows three scenes that depict an environment-based 
hazard of occlusion that impede the detection of oncoming 
vehicles and thus, could lead to the hazardous event of a 
collision. In scene 1, the hazardous event is potential at this 
stage, as the scene does not present immediate harm, but pre-
emptive action here is crucial as it may develop to harm. If 

undetected, the EV could begin the turn as the incoming vehicle 
approaches and evolves into a developing event as harm is more 
imminent in scene 2. Imminent detection at this stage may not 
allow enough time to act and could result in the collision shown 
in scene 3. These situations are difficult to formalise as they 
require an understanding of causality and counterfactuals. Also 
known as what-if questions, for example, "what if there is an 
oncoming vehicle behind these trees?". 

Another common example can be seen in the regulatory 
category. For example, upon approaching a distant traffic light 
that has been green for a while. A human driver may slow down 
as they consider the counterfactual of "what if the light starts to 
turn now?". However, this pre-emptive reasoning is difficult to 
formulate as it requires a causal understanding. It is not just the 
correlation that amber and red require you to yield but teaching 
the relational significance of green, amber and red.  

These examples of pre-emptive reasoning highlight the 
difficulty of early detection for machines but remain essential 
to avoid harm. However, early detection remains a current gap 
and thus, has gained traction in literature due to inferior 
hazardous event detection performance in complex 
environments, typical of the real domain [37], [38]. 

C. Novel Hazard Categorisation Scheme 

A hazard represents a potential source of harm and can 
originate from various sources during driving. For example, 
hazards can originate internally from the system due to the 
occupant (e.g., condition, misuse) or the system (e.g., hardware, 
software). Alternatively, harm can be external to the system, 
such as other actors (e.g., vehicles, pedestrians) or the 
environment (e.g., debris, ice). Harm can also be malicious and 
security related (e.g., malware, denial-of-service). Furthermore, 
harm may not be physical, but also economic or legal by 
violating regulatory traffic laws. 

 In our survey, no single categorisation scheme covered 
both internal and external hazards or exhaustively captured 
their diverse sub-classes. Subsequently, we propose a novel 
categorisation scheme derived from the literature [26], [39]–
[41], ISO standards [31] and large projects such as PEGASUS, 
which provides a structured categorisation of highway scenes 
[42], [43]. We note the popular five-layer highway scene 
segmentation scheme in PEGASUS (L1: Road-level, L2: 
Traffic infrastructure, L3: Temporary manipulation of previous 
layers, L4: Objects and L5: Environment) [42], [43]. However, 
PEGASUS is limited to highways and focuses on categorising 
the scene components that can be hazards but does not focus on 
categorising the hazards themselves. 

Alternatively, our novel categorisation aims to categorise the 
hazards irrespective of the scene to provide generalised high-

 

Fig. 1. Hazardous event lifecycle example of environmental occlusion that masks the presence of oncoming traffic and cause collision. 
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level hazard classes. By focusing on hazards, we aim to allow 
future systems to attach semantic meaning to class identifiers 
such as "actor" to better understand their impact and behaviour. 

Our research focuses on naturalistic external hazards (e.g., 
actor, environment and regulatory), highlighted in Fig. 2. 
Naturalistic hazards that are not from malicious intent, such as 
security-based hacking factors or internal factors, as we believe 
these are separate in-depth topics in themselves.  

Actor  
Motor Vehicle: This sub-class includes self-powered 

vehicles such as cars, vans, lorries and motorcycles. Hazardous 
events are typically collisions or harm from an evasive 
manoeuvre to avoid a collision. Triggering events can be 
behaviours such as overtaking and lane change. The behaviour 
of larger vehicles is typically more predictable due to traffic 
laws and the structured driving domain.  

Non-Motor Vehicle: Includes pedestrians, bicycles and 
animals that can cause collision or harm due to evasive 
manoeuvres. This class is more challenging to predict as 
directions can change rapidly with unconstrained movement as 
many pedestrian accidents occur due to violation of traffic laws 
and inattentiveness [44].  

Environment:  
Static: These hazards are stationary in time and represent 

more permanent entities. It consists of obstacles, which can be 
roadside structures such as bollards, islands or buildings. 
Hazards can also come from road geometry, such as sharp 
corners that can lead to a loss of control or from complex road 
topology, such as intersections, which are the largest site of AV 
incidents [28], [29].  

Dynamic: These hazards are dynamic in time and consist of 
adverse weather conditions that can make roads slippery due to 
rain, ice and snow and can affect visibility for vision-based 
sensors. Also included are temporary debris and road condition 
such as uneven or damaged surfaces that must be avoided and 
can affect the behaviour of other road users. 

Regulatory: Includes traffic laws and are usually detected 
using map priors that contain road rules (e.g., right of way, 
speed limit) or by using live detection of traffic signal 
infrastructure. Systems must robustly detect the driveable 
region and be aware of the applicable regulations to avoid 
violating traffic laws, for example, staying under speed limits 
and who has the right of way. 

D. Hazardous Event Detection Process  

Due to the prevalence of dangers in the driving domain, a 
robust hazardous event detection framework is critical to ensure 

a safe driving policy for short-term automated driving systems 
and the long-term transition to autonomous systems. The 
traditional automated driving pipeline starts with perception, 
which uses multiple sensors such as RADAR (Radio Detection 
and Ranging), camera and LIDAR (Light Detection And 
Ranging) to sense the surrounding environment. These sensors 
collect low-level data that is then processed with perception 
algorithms to extract object detections, classification and 
trajectory predictions of actors and elements in the scene. Scene 
information and EV intention from the decision-making and 
planning modules are then passed to the runtime hazardous 
event detection module to identify all potential sources of harm 
(i.e., hazardous events). Potential hazardous events are then 
passed to a risk assessment module which evaluates each in 
terms of likelihood and severity to produce a risk score for the 
decision-making module to plan mitigating action. 

The hazardous event detection goal is to identify situations 
where a hazard may lead to a hazardous event either known or 
unknown to the system. Thus, the challenge is how to process 
vast amounts of perception data to represent a driving scene 
with sufficient detail [45], [46] for detection and then how to 
generalise hazardous events to detect unseen scenarios.  

The level of hazard awareness required is dependent on the 
complexity of the automated driving function, with minimum 
distance thresholds sufficient for Level 1 emergency braking, 
but insufficient for Level 2 adaptive cruise control. This survey 
focuses on the application to help transition to higher levels of 
autonomy Level 3+, where AVs will need to safely control all 
driving functions. As human behaviour plays a large factor in 
road safety, this review aims to present readers with the current 
landscape of frameworks and inputs to model or learn such 
interactions between actors, the environment and traffic rules. 

Graph-based methods show a promising opportunity to 
employ relational reasoning to incorporate context and infer 
interactions, however, the desired input to sufficiently represent 
a hazardous driving event is yet to be defined. Consequently, 
this survey aims to collect and present researchers with the 
current landscape of approaches to inspire applications that 
refine and contribute to the state-of-the-art.   

III. REVIEW OF GRAPH-BASED METHODS 

This section begins with a background to graph theory. We 
then review the state-of-the-art hazardous event methods and 
divide into the most prominent categories: knowledge rule-
based, probabilistic and machine learning-based and discuss 
each individually. A summary of each method, its advantages 
and limitations are provided in Table II. Followed by an 

Internal

Occupant System

Hardware SoftwareConditionSystem Misuse

Tired/ 
inebriated

Violation of 
traffic laws

Fault Fault

External

Motor Vehicle
Non-Motor 

Vehicle
Static Dynamic

Regulatory

• Light vehicles
• Heavy 
vehicles
• Motorcycles

• Pedestrians
• Animals
• Cyclists

• Roadside 
Structure
• Road 
topology 

• Debris 
• Road state
• Weather 
• Visibility

Traffic Laws

Actor Environment

• Stop sign
• Give way
• Speed
• Traffic lights

Naturalistic External Hazards (without malicious intent) 

Security

Hack Exploit

• Malware
• Tampering
• Denial-of-
service

 

Fig. 2. Categorisation of hazards in the driving domain. 
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overview of performance metrics and hazard-focused datasets 
to evaluate methods. The authors also note that as hazardous 
event detection and risk assessment are so intertwined, many 
papers adopt the term risk as it encapsulates hazardous event 
detection, but terms are not well differentiated in literature. 

A. Graph Networks Background 

In an inherently interconnected driving domain, this 
research aims to utilise graph-based methods to represent these 
relations as a key paradigm shift for knowledge representation 
and inference [47]–[49]. As is the limitation of non-Euclidean 
data structures that cannot represent complex relationships 
using n-dimensional space without losing essential node or 
vertex features or the directionality of relations and how they 
interact. Instead, graph structures can store meaningful 
representations of the domain, such as driving scenes with 
variables, such as actors, as vertices (i.e., nodes) and their 
relationships to other entities as edges.  

A graph � is formally defined as a pair of sets � = (�, �), 
where � is a set of vertices and � is a set of edges [50], [51]. 
Each edge � connects to at least two vertices described by {�, �} 
pairs denoting originating and terminating vertices, x,y 
respectively. This relationship can be directed or undirected to 
show the direction of influence, and thus, each {�, �} pair can 
be ordered or unordered.  

Edges can also be weighted (��) to encode semantic 
information such as distance between actors or spatial 
relationships (e.g., in front, behind). This unique data structure 
allows cause and effect relations to be used directly for hazard 
event detection or to organise domain data into relational 
structures for feature learning. 

In an undirected graph, the edges are bidirectional, with no 
directional restrictions. If an undirected graph has connections 
between all vertices, this also allows cyclical traversal, as 
shown in Fig. 3a,b. In this configuration, vertex traversal is 
unrestricted, and thus, edge descriptions {�, �}  do not form 
ordered pairs. These represent symmetric unidirectional 
relationships such as a two-way road network. Conversely, 
directed graphs have directional restrictions, so edge 
descriptions form ordered pairs between originating and 
terminating vertices {�, �}. A directed graph can be cyclic or 
acyclic if it is not possible to return to the starting vertex, as 
visualised in Fig. 3c. The latter has no connection from vertex 
three back to vertex 1, disconnecting the cycle into an acyclic 
graph. This ability to map directional relationships allows graph 
structures to represent cause and effect and isolate triggering 
events needed to pre-empt hazardous events.   

Directionality defines reasoning capability and can be 
deductive, inductive and abductive. Deductive reasoning is a 

one-directional top-down approach. Starting from a hypothesis, 
such as the presence of a hazard, and confirming these using 
observations and known relationships. As it uses known 
relations, it does not support reasoning outside the scope of 
learning and to achieve this; bottom-up approaches are used to 
reason from effect to cause. Inductive reasoning is an example 
of this which uses detailed observations to empirically identify 
patterns and relations to infer a hypothesis. In practice, 
obtaining comprehensive observations is not always viable, and 
subsequently, abductive reasoning can be used to infer the most 
plausible conclusion with incomplete data. Abduction uses its 
limited observations to "explain away" causal hypothesises. For 
example, predicting whether it is raining; if pedestrians have 
umbrellas, the likelihood of rain is higher. Alternatively, in 
countries where umbrellas are used to shade users from the sun, 
observing both umbrellas and the road being wet is required to 
reduce the likelihood of sun and reaffirm rain. 

Given these properties, graph networks are an ideal platform 
to model hazardous events by providing a relational data 
structure that can aggregate heterogeneous data from various 
sensors while being able to represent traffic objects and their 
relationships. Using expert knowledge and ML, hazardous 
events can be decomposed by defining their characteristics and 
interdependencies for earlier and more robust detection.  

This process imitates the high-level reasoning of human 
drivers that process the constant stream of perception to form a 
cognitive abstraction of the scenario. Abstraction by 
understanding the relationships between the objects and events 
to infer situation semantics. This is comparable to high-level 
data fusion to reduce both data volume challenges with 
asynchronous and heterogeneous information fusion to build 
higher-level hazard descriptions. 

B. Method Categorisation 

This survey reviewed three key categories within graph-
based methods, as shown in TABLE II. Starting with rule-based 
knowledge methods that form knowledge bases and use rules to 
match known hazardous combinations with current scenes. This 
is followed by probabilistic methods that use a combination of 
probabilistic events as evidence to update the probability of a 
hazardous event occurring. Probabilistic methods can 
incorporate prediction or perception uncertainty which is 
invaluable in the complex driving domain. Lastly, we review 
the opportunity presented by the ML approaches that use 
accident databases to learn features and hazardous event 

 
Fig. 3. Graph types: (a) undirected cyclic (b) directed cyclic (c) directed 
acyclic. 

Undirected Cyclic

a)

Directed Cyclic

b)

Directed Acyclic

c)

VertexEdge Weight

V₁

V₂ V₃

V₁

V₂ V₃

V₁

V₂ V₃

TABLE II. SUMMARY OF METHODS 

Method Description Papers 

Rule-Based 
Knowledge 

 
Ontology  

 

Knowledge bases are built to describe 
hazardous events and the driving domain, 
from which rules are formulated to match 
known hazardous scenarios to current 
observations. Rules can range from simple 
heuristics comparing the current speed to 
speed limit to combining several factors 
such as actor location, heading and speed.  

[18], 
[35], 
[55]–
[61] 

Probabilistic 
 

Bayesian 
Networks 

Hazardous events modelled by determining 
the conditional probability of scene 
elements affecting the hazardous event. 
Networks can propagate uncertainties from 
input variables to prediction output.  

[19], 
[67], 
[69]–
[74] 

Machine 
Learning 

 

Graph Neural 
Networks 

Machine learning (ML) approaches learn 
hazardous event patterns between traffic 
entities using large datasets. Thus, less 
interpretable than the other methods but 
allows better generalisation and scalability. 

[20]–
[22], 
[79]–
[82] 
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patterns between traffic entities. This represents an under-
exploited area that could help resolve the intractable problem of 
explicitly defining all hazardous events through supervised or 
unsupervised learning. 

C. Rule-Based Knowledge Methods 

1) Overview  

The first set of methods uses rules to detect hazardous 
events, with implementations that range from simple decision 
trees which become difficult to scale to more advanced 
knowledge database implementations that formally describe 
complex domains and allow rules to be written that define 
hazardous events as derivatives from the domain. We focus on 
the latter method as a scalable and widely applicable approach 
and are referred to as ontology-based methods.  

2) Ontology Background 

An ontology has many definitions in the literature; for this 
research, it is the formal description of concepts  (i.e., anything 
that exists) in a domain as a definition of classes and subclasses, 
each with associated properties and values which are related 
using a hierarchy [52], [53]. Written in ontology web language 
(OWL), formulated by the World Wide Web Consortium 
initially to describe Web data [54]. OWL is a logic-based 
language that allows knowledge to be used computationally 
using rules and statements.  

Rule-based languages and logic can be similarly used for 
hazardous event detection to translate hazardous event concepts 
into first-order logic. To detect specific hazardous events, 
hazard classes are modelled using all associated properties and 
relationships. For example, an actor hazard can have properties 
describing location and speed, as shown in Fig. 4(a). In 
ontology methods, semantic web rule languages (SWRLs) are 
commonly used to define rules on top of ontologies, as shown 
in Fig. 4(b). In this example, an actor collision event rule is 
defined using parameters referred to as atoms which are linked 
by conjunction logic denoted ^ to form the antecedent (i.e., 
body) leading to a consequent result (i.e., head), denoted →. 
This rule can be interpreted as follows: if the domain contains 
an actor and road and the actor is on the road and at high speed. 
The result is a potentially hazardous actor collision. SWRL link 
ontologies by describing the domain with query rules to identify 
hazardous events.  

The ontologies defining hazardous events are then 
compared with information describing the current domain from 
sensor data, stored in a set of assertional axioms to infer 
hazardous events. Thus, the ontology-based framework in 
hazardous event detection follows three key steps: (1) Ontology 
modelling to derive terminological axioms of key rules, classes, 

and relations. (2) Description of the current scene with 
perception input stored as assertional axioms. (3) Inference by 
comparing axioms with rules to detect hazardous events. 

3) Ontology Methods 

As a popular method for aggregating perception data to infer 
semantic information about scenes, ontologies have been used 
to organise detected traffic entities from perception sensors into 
an ontology that describes the entities with a hierarchy of 
relations and interactions. Hazardous events are then inferred 
using rules defining which combination of entities and 
interactions describes a hazard.  

As proposed in [55], [56], the authors evaluated pedestrian-
based hazards in different traffic scenarios with a monocular 
camera. Pedestrians were detected and modelled as objects with 
attributes of speed, location and motion direction. SWRL rules 
were used to define whether pedestrians could cause harm if 
they were on the road and at high speed and posed toward the 
EV. Due to the limited sensor suite of only a monocular camera, 
this technique was sensitive to illumination with limited 
accuracy for object localisation. As determining pedestrian 
distance, speed and location were vital and only pixel and frame 
data were available, this limits practical usage. However, the 
SWRL ontology shows a simple method to generalise actor 
hazards by abstracting motion behaviour and scene semantics. 

In addition to actor hazards, environment considerations 
were modelled in [57] as it focused on off-road hazards. 
Hazards such as road type (path, path side), adverse weather 
and occlusion we considered. Particularly for adverse weather, 
the effects of fog, snow, and rain were modelled as it creates 
both visibility and road surface traction hazards. 
Using SWRL to define hazardous events within the scene, soft 
body obstacles were given semantic attributes to avoid 
prompting evasive manoeuvre as they don't impede motion. 

The final hazard category is regulatory, and in [58], traffic 
regulation-based hazards were studied using ontological 
descriptions of road segments and intersections to contain road 
sign classifications and generic right-of-way rules. Similarly, 
SWRL was used to connect ontologies to detect traffic rule 
violations, using a modular framework to be country agnostic; 
this method is promising but is yet to be validated with testing.  

Some state-of-the-art hazardous event detection works can 
also be found in recent research applied to construction [59]–
[61] and are included due to their highly transferrable 
methodologies. The majority of the methods [59], [61] use 
computer vision first to detect scene entities and their attributes 
which are related in expert-defined ontologies and then queried 
using rules to identify hazardous events.  

In [59], [61], hazardous events are based on spatial features 
such as the distance of workers from machinery and their 

Concept Class

Subclasses

Properties

Values

a) Ontologies b) Rules

Class Atom Property Atom

Property Atom Update

Antecedent (Body)

Consequent (Head)

����� (?a) ^ ���� (?�) ^ OnTheRoad(?a, ?r)  ^ ℎ�����ℎ����� (?a, ?s)   

  ℎ�������������������(?�, ?ℎ)

Driving Hazards

Actor

Location Speed

Road Pavement LowNone Medium High

 

Fig. 4. (a) example of driving hazard class hierarchy (b) SWRL example of actor-based collision rule  



 
 
 

7

positional relations calculated by bounding box overlap (e.g., 
inside, overlap, outside) to signal hazards such as a PPE 
violation of a worker not wearing a helmet if the bounding box 
of the helmet did not overlap with the worker. The key 
limitation of this approach is only utilising spatial relation, 
which may not be robust in cases of occlusion or lack of 
observable data. A hazardous event has more attributes than 
spatial relations, and thus, [60] added semantic context such as 
activity and duration to better generalise hazardous events, 
which were then compared to the current scenario for similarity.   

SWRL rules represent a simplistic deductive reasoning 
approach to detect known hazardous combinations of scene 
entities which limits reasoning to the scope of learning. To 
transition to autonomy, there will always be unseen scenarios 
and inherent uncertainty for which explicit rules may not be 
sufficient. To find the most plausible conclusion given 
incomplete observations, abductive reasoning is necessary.  

Reasoning from effects to the cause, abductive reasoning is 
used in the iterative works of [18], [35]. In [18], the authors 
assessed traffic hazards by compiling a vast knowledge base of 
32 causal rules to relate traffic entities, such as "cars must stop 
at red traffic signals", 2077 ontologies to categorise domain 
entities and 11 hazardous behaviour rules describing such as "a 
person can rush out" [18]. The network then assessed semantic 
scene descriptions for hazards using a natural language 
abductive reasoner [62] to generate plausible hazardous event 
hypotheses. An example of abduction can be represented by a 
ball in the road observation leading to a hazardous event 
prediction. If there is a ball on the road, an owner could follow 
the ball. The owner could be a person, and this person could be 
a child. The owner of the ball could be hidden behind a house 
and thus, does not see the road. The person may run out to 
retrieve their ball, which may lead to a hazardous event. This 
abduction is exemplified in Fig. 5. 

The reasoner reasoned with the knowledge base rules and 
was optimised using ML training to minimise prediction error 
by favourably weighting knowledge base rules that best 
identified hazardous events. As the method only uses high-level 
scene semantics, the inference is only qualitative and lacks 
rigour. This limitation is addressed by [35], who expanded the 
method by adding quantitative metrics such as actor position or 
velocity to derive trajectory and predict intention. The 
qualitative hazardous event predictions were then re-ranked 
using a physics simulator to predict actor trajectories based on 
physical plausibility. This method demonstrates how rule-based 
methods can be extended with ML approaches and incorporate 
both qualitative scene semantics and quantitative trajectory 
level predictions to improve the accuracy of hypothesises.   

D. Probabilistic Methods 

1) Overview 

These methods incorporate domain uncertainty by utilising 
conditional probabilities that a road element(s) lead to a 
hazardous event given some assumptions and uncertainties 
from input variables. With a wide range of probabilistic 
methods using hidden Markov models and Bayesian networks 
(BNs), this survey will review BN implementations due to their 
ability for omnidirectional inference, allowing both deductive 
and abductive reasoning and the use of continuous variables to 
represent the dynamic driving domain. Even under uncertain or 
missing inputs by using conditional probability [63], [64].  

2) BN Background 

Amongst the most popular of the methods, BNs allow 
omnidirectional (i.e., abductive and deductive) reasoning with 
uncertain or incomplete data in an interpretable graph structure 
[63]–[66]. A BN is an acyclic graph using Bayes' theorem 
shown in (1) to calculate a posterior probability (I). The 
posterior probability is the probability of hypothesis A, given 
an observation B, which has already occurred. The posterior 
probability is calculated by multiplying the probability of 
hypothesis A (II) with the likelihood (III), divided by the 
marginal probability (IV). Where the likelihood (III) is the 
probability of the hypothesis before evidence was updated. The 
marginal probability (IV) is the probability of the evidence 
being independent of the hypothesis. Part (III) and (IV) 
determine the strength of the evidence to affect the prior (II). 

 

P(A|B)� = P(A)��
�(�|�)���

�(�)��
 (1) 

 

I Posterior Probability: Probability of hypothesis A, given an 
observation B, which has already occurred. 

II Prior: Prior probability of hypothesis A, before evidence of 
observation B. 

III Likelihood: Probability of the observation B, given a 
hypothesis A. 

IV Marginal Probability: The probability of observation B, is 
independent of any hypothesis and is not always known, so 
marginalisation is used, and the unconditional probability of B 
is usually substituted. 

Thus, the network describes a set of random variables X, 
with directed relations to other vertices and a conditional 
probability table (CPT) ������������(��)� to quantify parent 
to current vertex relations. This creates a network of random 
variables �� … �� and CPTs, which combine to form a joint 
probability distribution using the chain rule and assuming 
conditional independence that each variable � only relates to its 
parents. The joint distribution (2), with random variables �� 
taking fixed values �� . 

P(x1…xn)= � P(xi|Parents(Xi))

N

i=1

 (2) 

 
As a strength of BNs, the CPTs quantify cause and effect 

between random variables and uncertainty from data quality or 

There is 
a ball Y

X follows Y
X is a person
X is a child

X is behind house
X does not see me
X may run out

Potential 
hazardous 
event

Fig. 5. Example of abductive reasoning, adapted from [21]. 
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incomplete observations to produce a probability distribution 
for the prediction. To generate CPTs, authors generally use 
either expert scoring or ML approaches that relate a statistical 
occurrence to the probability. However, generation is 
challenging as either can be biased, with ML approaches 
proving difficult as the effect of random variables on hazardous 
events can be challenging to quantify and requires specific 
datasets that can be incomplete or imbalanced.  

To represent relations and causal influence, the vertices are 
connected by directional arrows. However, the flow of 
information is unidirectional allowing deduction, induction and 
abduction [64], [67]. Moreover, the graph does not form cycles 
to avoid circular reasoning, which would make it challenging to 
trace causality to a triggering event. Events that evolve in time 
so have a temporal element that must be considered; BNs can 
account for this using dynamic Bayesian networks (DBNs) 
[66], [68]. DBNs model the relationship of discrete random 
variables between time steps through CPTs that calculate the 
conditioned dependence of the current step given states at the 
previous step. By this method, DBN overcomes the limitations 
of independent time step inference, so are prevalent in 
interaction focused hazard detection methods [8], [66].  

The ability to trace causal relationships, use bidirectional 
reasoning and incorporate uncertainty makes it ideal for 
hazardous event detection, which is difficult to formalise as it 
is interconnected and complex. Thus, decomposing hazardous 
events by cause and effect makes the formalisation more 
manageable. In addition, the ability to propagate uncertainty 
enables the network to detect this as a hazard in itself if the input 
information or prediction is untrustworthy. 

3) BN Methods  

In an inherently uncertain driving domain, reasoning the 
influence of a combination of probabilistic events is the strength 
of BNs. Quantifying uncertainty is crucial for decision making 
and is utilised clearly in the work of [69]. The authors present a 
theoretical BN framework for platoon vehicles to detect 
hazardous events such as a collision between members and 
speed violations by comparing safe prior with current speed and 
inter-distance observations.  Hazardous events are then to 
derive system states, from state 0 (safe distance, legal speed) to 
state 4 (unsafe distance, illegal speed) up to state 5 (insufficient 
sensor information). The novelty of this method was that each 
state predefines mitigating actions (continue, decelerate, stop) 
to intervene. Uncertainty in hazardous event detection is then 
propagated through probability distributions at each node with 
an added "DetectionQuality" node to flag unsure detections and 
incorporate such uncertainties in the probability distributions. 

The method in [69] is a good representation of BN 
reasoning but illustrates a common limitation between methods. 
Hazardous event probabilities were aggregated to infer system 
states that reflect both actor collision and speed violation. As 
events were not separated, this led to a mixed network that does 
not easily scale. A limitation of many methods in the literature 
and is due to one graph structure for all reasoning. 

An example of hazard category separation can be seen in 
[70], in which internal EV conditions, external environment and 
other vehicle-based hazards are modelled as independent 
subclasses in the BN. Using properties such as visibility, road 
conditions and vehicle density to reason hazardous 
environmental events whilst using velocity, distance, vehicle 
type and acceleration to determine if other vehicles may lead to 

a hazardous event. EV conditions are also quantified by the 
dashboard fault warnings (good 0, moderate 1, bad >1).  

Modelling hazardous events independently allows multiple 
types to be detected, but interactions between types were not 
captured. This reduces the predictive power of inference as it 
cannot propagate the effect of events between classes that are 
highly connected. As explored in [19], the authors focused on 
interactions between actors and the environment to predict the 
hazardous events of a vehicle collision and loss of control at 
corners, Fig 6. Using both measurements and vehicle-to-vehicle 
(V2V) information, the BN models a loss of control from the 
EV by considering the upcoming curve radius, driver reaction 
time, EV speed and max deceleration. The last three factors of 
this class also affect the probability of rear-end collision and 
thus are interlinked between hazard classes. Using these 
interrelations, rear-end collision also utilised front vehicle 
speed, distance and braking intention. The interaction of the 
environment is especially explored, with weather conditions 
(e.g., temperature, precipitation) affecting the modelled road 
state and maximum deceleration, which is used for prediction.   

Another vital topic in the literature is the selection of 
random variables to model hazardous events and their 
associated CPTs to quantify the strength of relations. The 
random variables at the vertices are generally defined using 
expert knowledge and the CPTs through either experimental 
data or expert scoring. This means that models and their CPTs 
can be difficult to validate, especially as it is challenging to 
quantify the effect of random variables on event materialisation. 
To explore this challenge, we then evaluate methods that 
propose a data-driven model and CPT generation.  

In [71], the authors searched for hazardous events at 
automatic railway level crossings and determined the most 
influential factors that cause vehicle accidents. The method uses 
real-world data on railway crossing accidents which are 
processed for causal discovery of hazardous events. First, 
causes were learnt through automatic structure learning 
methods such as Bayesian Search and augmented Naïve Bayes 
(ANB), which generates a BN by defining the hazard to be 
studied as the parent variable from which all remaining dataset 
variables are considered features and learns corresponding 
connections between features and CPTs from data. Six search 
models were tested using a dataset of 4,200 accidents, and each 
model was then manually optimised to remove trivial factors. 
The level of causality of hazardous event variables were then 
classified into three levels: primary, secondary and tertiary, 
along with the CPT tables to quantify the influence of variables.  

Unfortunately, the limitation of empirical structure learning 
is that the algorithms tend to find observable correlations rather 
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Inter Distance
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Fig 6. Hazardous event BN model, adapted from [19]. 
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than causations which sometimes need to be inferred. As such, 
search algorithms are used in preliminary search stages with 
constraints to guide learning and require a manual post-review. 
Although algorithms do show progress, as [71] demonstrated 
promising results using ANB methods, achieving only a 5-13% 
performance difference (accuracy and AUC) to the expertly-
reviewed network that culled erroneous or trivial connections. 
Alternatively, [72] investigated search methods to find highway 
hazards by first using expert knowledge to build the initial 
network and then a K2 greedy vertex search to expand the 
network. CPTs are then generated via an expectation-
maximisation algorithm, and highway hazards are inferred 
using a junction tree method. The final method modelled five 
different hazard types (driver, vehicle, road, environment and 
management) with interactions between categories.  

The methods above are limited to single time steps, but the 
temporal element is required and modelled using DBNs to 
model evolving interactions. To show this, [73] modelled driver 
intention using the temporal capability of DBNs. To detect 
vehicle collision hazards at intersections, the network inferred 
the expected action according to traffic regulation and 
compared it with temporal driver intention. The network 
utilised both observable vertices of vehicle position, heading, 
and speed and hidden vertices to represent behavioural 
variables that are not directly observable but inferred. As one of 
the few methods tested in the field at a controlled intersection, 
data on vehicle metrics was gained through V2X, limiting 
practical applicability if this is unavailable or not reliably 
detectable. Nevertheless, it highlighted the key that hazardous 
event detection requires knowledge of developing interactions 
for robust prediction [73]. 

As the importance of interactions becomes more apparent, 
so does DBN implementation with further development, as seen 
in [74], in which the authors explicitly model inter-vehicle 
dependencies by grouping scene information in organised 
layers. Starting with a first layer containing observable sensor 
measurements followed by a kinematic layer describing ego 
position, speed and heading. This then feeds into a driving 
context layer that reasons the hazardous events and associated 
risks. Using the DBN to process the temporal data from 
previous layers, hazardous events on a vehicle level are then 
detected from geometric and dynamic relationships between 
vehicle motion. Scene-level hazards are also identified using 
ML classifiers to identify potentially hazardous traffic 
conditions by considering the average speed of scene actors and 
vehicle density. This method allows the network to not identify 
potential vehicle collisions from their temporal interactions but 
pre-empt hazardous driving conditions.   

E. Machine Learning Methods 

1) Overview 

This category represents an opportunity for further research 
to use feature learning over graph networks. A feature is 
representative of a property or characteristic that is learnt and 
provides a level of abstraction [75]. As it is intractable to 
specify all hazardous events, this could synergise with current 
methods by finding new causal links or generalising using data.  

Traditional ML methods cannot be used directly on graph 
networks due to the irregular data structure, no fixed vertex 
order and dependency between vertices which need to be 
considered during learning. For reasoning using graph 

networks, a key approach is using Graph Neural Networks 
(GNNs) [76]–[78]. As an area that we feel is under-exploited, 
GNNs incorporate ML techniques that can harness the 
relational and semantic data uniquely captured by graphs. 

2) GNN Background 

GNNs are a group of neural networks (NNs) that perform a 
learning task with graph data. Each NN represents a learning 
algorithm that uses a network of functions (neurons) to learn a 
representation of a given input, as inspired by neural activity 
within the brain. GNNs present a compelling opportunity to 
learn the complex evolution of hazardous events due to their 
ability to apply ML to extract features from graph data that 
depicts a relation hierarchy linking the driving scene [76]–[78].  

GNNs take graph structures as input to learn the spatial 
features by using information aggregated from neighbouring 
vertices which are then combined using NNs repeating over all 
neighbouring vertices to preserve connectivity. The NNs 
perform permutation invariant aggregation of neighbour 
features, combined using a separate NN into an embedding that 
is a generalised representation of the graph [78].  

GNNs come in many variations, such as convolutional for 
vertex and graph classification, autoencoder-based for link 
prediction and temporal for time-series forecasting [77]. The 
methods within this survey were primarily convolutional, 
spatio-temporal or a combination of methods.  

 Convolutional Graph Neural Networks (CGNNs): 
Methods transform the convolutional operation from 
grid to graph data. Convolutions are used to aggregate a 
vertices’ features with their neighbour's features to form 
an aggregated representation. Due to their ability to 
aggregate local vertex representations, these methods 
form a basis for building other models. 

 Spatio-Temporal Graph Neural Networks 
(STGNNs): Methods consider both the spatial and 
temporal features. For spatial learning, the model 
processes each vertex to create vertex representations 
that contain information about each vertex, and 
connected edges interact and relate with their 
neighbours to create generalised representations. Using 
the generated vertex representations, the temporal 
dimension then learns their evolution over time to create 
a combined spatio-temporal embedding for prediction.  

3) GNN Methods 

Not all hazardous events can be explicitly defined, and thus, 
the challenge is learning features to characterise new or existing 
hazardous events to continuously improve detection. To be 
robust in the driving scene, we must extract features from the 
complex interactions between the environment and vehicles.  

With an ability to learn patterns from relational data, GNNs 
are prevalent in related topics of scene understanding and 
vehicle interaction by relating scene semantics in a graph 
structure [79], [80]. By focusing on hazardous interactions, 
GNNs can easily extend to hazardous event detection by 
representing actors and traffic objects in a relational graph and 
learning spatio-temporal patterns to predict hazardous events. 
A few authors have demonstrated this by using Bayesian NNs 
[22] or long short-term memory (LSTM) networks in [21], and 
have shown promising results but remain under-exploited.  
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Detecting dynamic hazards, such as other actors, requires 
spatio-temporal data to track their trajectory relative to EV 
intention. As the optimal solution is unclear, the extraction and 
encoding methods to represent spatio-temporal evolution from 
video inputs have evolved over time. In the related works of 
[79], [80], the authors had the aim of classifying driver 
behaviour (e.g., lane change, overtake) and represented the 
scene as a graph of actors as vertices and used edges to encode 
semantic spatial (e.g., right, left) and semantic temporal data 
between actors (e.g., moving forward). At each time step, 
monocular camera images were used to detect, track and project 
actors to bird's eye view (BEV). BEV allowed spatio-temporal 
calculations represented in an interaction graph and encoded 
using a multi-relational graph convolution network (MRGCN) 
for an LSTM to predict temporal vehicle behaviours. The 
novelty in this multi-layer approach was using one layer for 
each actor relation to which graph convolutions were applied to 
generalise the combination of temporal relations that could 
predict vehicle behaviours. However, complexity was limited 
as spatial relations were semantic, with only vehicles and lanes. 

As spatio-temporal relations are key for describing hazard 
evolution, methods have naturally expanded to capture more 
complex evolutions. In [81], authors classify more complex 
vehicle interactions to predict actor goal's (e.g., give way) and 
cause (e.g., crossing vehicle). Separate spatial relation scene 
graphs are encoded to reason dynamic actor interactions (e.g., 
car, pedestrian, bicycle, bus, train) and the effect of static traffic 
regulation objects on interactions (e.g., road markings, traffic 
signs, road infrastructure). This is done to explicitly define 
which actor interactions or objects affect actor behaviour. 
Secondly, this differentiation is done as traffic infrastructure 
can be diverse and thus difficult to detect or contain within 
rectangular bounding boxes. Using video as input, instance and 
semantic segmentation are used to detect actors and objects 
from which spatial relations between them are calculated using 
Euclidean distance. Graphs are then formed to model actors in 
one graph and regulation objects in a separate graph. CGNNs 
were then applied to encode graphs into vector representations, 
followed by temporal fusion with element-wise max pooling 
and finally fed to the classifier. 

Previous authors calculated spatial information from 
monocular image input, but this contains limited depth 
information. In [82], again, behaviour is forecasted, but using 
LiDAR and HD maps to help calculate more accurate spatial 
and motion predictions from LiDAR point clouds. What is 
novel about this study is the probabilistic GNN, inspired by 
Gaussian Markov random fields to forecast motion by 
modelling spatio-temporal interactions. The method takes 
actors as vertices to build a fully connected directed graph 
trained to model the cause and effect of each pair of actors. 
Probabilistic prediction also allowed uncertainty to be 
propagated to prediction for more informed interpretation.  

With advanced spatio-temporal and GNN processing in 
related fields, methods can extend to hazardous event detection 
by capturing complex spatio-temporal evolutions. As 
demonstrated in [22], a probabilistic GNN was created by 
pairing a CGNN with a Bayesian NN, with a focus on pre-
emptively detecting actor-based collisions in traffic accident 
videos. Object detections were fed as input into a CGNN to 
encode spatial embeddings for a recurrent neural network 
(RNN) to capture temporal patterns. Actor collisions are then 
predicted with the Bayesian NN to propagate uncertainty and 

evaluate accident likelihood; however, the limitation was 
interpretability due to the RNN hidden states. 

Alternatively, in the iterative works of [20], [21], detailed 
semantic descriptions and attention mechanisms were used to 
improve the interpretability of cause and effect. The authors 
identified hazardous events within videos of lane-change 
manoeuvres using both real and synthetic data for transfer 
learning. Dynamic actors (e.g., vehicles and pedestrians) and 
static traffic objects (e.g., lane markings and traffic signs) were 
detected in image frames and extrapolated into BEV to 
calculate spatial relations. Actors and objects were then 
represented as graph vertices with semantic spatial relations 
stored as edges. Semantic relations included distance (e.g., near 
~5m, super_near ~2m), relation (e.g., rear_right, right_front) 
and an "isIn" relation to describe which lane actors are within 
(e.g., left lane, middle lane, or right). A MRGCN was then used 
to convert the graphs structures to a vectorised representation 
and processed with a LSTM network to output a spatio-
temporal sequence and then classified with a multi-layer 
perceptron. Hazardous events from spatial and temporal 
features are then learned through training data. In addition, 
interpretability was increased by adding a temporal attention 
layer to the LSTM to rank the effect of hidden states on 
classification outcomes. Thus, this method uses detailed 
semantic spatial descriptions and attention mechanisms to 
improve the interpretability of hazardous event detection.  

F. Hazardous Event Quantification Metrics 

With the variety of different hazardous events studied in this 
survey, each utilised different metrics to identify hazardous 
events. Due to this variety, we examined the metrics utilised for 
each event category and summarised these in TABLE III. 

Vehicle Actor: These hazardous events involve collisions, 
which are usually quantified based on intersecting trajectory or 
predicted behaviour. As such, metrics centre around spatial and 
temporal features. Over half of the methods within this survey 
used spatial features to either semantically describe the relative 
location (e.g., front, behind, left, right) in the case of  [18] or 

TABLE III.  HAZARDOUS EVENT QUANTIFICATION METRICS 

Actor Environment Regulatory 

Vehicle 
Non-

Vehicle 
Static Dynamic 

Traffic 
Laws 

Spatial 
[18], [19], 
[21], [22], 
[35], [57], 
[58], [69], 
[70], [73], 
[74], [79]–

[82] 
 

Temporal 
[19], [21], 
[22], [35], 
[69], [70], 
[73], [79]–

[82] 
 

Behaviour 
[18], [19], 
[35], [73], 
[79]–[82] 

Spatial 
[18], [22], 
[35], [55], 

[56] 
 

Temporal 
[22], [35], 
[55], [56] 

 
Behaviour 
[18], [35] 

Road Type 
[19], [57], 
[58], [72] 

 
Geometry 

[19] 
 

Weather 
[18], 
[19], 
[57], 

[70], [72] 
 

Visibility 
[57], [70] 

Rules 
[58], [69], 

[72] 
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quantify actor location and pose in [35] and inter-vehicle 
distance within [19], [69].  Similarly, temporal features were 
used to represent speed, velocity and trajectory. Spatio-
temporal features were then usually processed to derive 
physics-based colliding trajectory predictions such as TTC and 
equivalents or used to predict future behaviour such as braking 
intention [19] or intended manoeuvres [18], [35].  

Non-Vehicle Actor: Similar to vehicle actors, a collision 
event is quantified based on spatio-temporal features to search 
for colliding trajectories. The key difference is the unstructured 
nature of pedestrian trajectory, which is slower but can change 
direction rapidly and is less predictable than vehicles restricted 
to road rules and lanes.  

Static Environment: To detect static hazards within the 
environment, [19] utilised road geometry to predict a loss of 
control event at sharp corners by considering curve radius, 
current speed and maximum deceleration.  Road type can also 
be used to predict hazardous regions within specific domains 
such as intersections, which have more complex interactions, 
traffic density and regulation or [57] who studied hazards in off-
road driving. Off-paths were also classified as more hazardous 
with more obstacles and uneven surfaces.   

Dynamic Environment: Methods reviewed in this survey 
primarily focused on adverse weather conditions as they can 
affect visibility and road traction. As considered in [18], who 
detected rain, snow and ice with more complex 
implementations using temperature and precipitation to predict 
road traction to forecast max deceleration and avoid rear-end 
collision in [19]. Along with creating adverse road conditions, 
weather conditions can also change visibility which affects 
vision-based sensors, and as such, methods also quantified this 
hazardous event by semantically classifying the range of sight 
(short, near, far) [70] and phenomena such as fog, snow and rain 
in [57] to trigger more cautious driving policy.  

Regulatory: To avoid violating traffic laws, methods used 
current speed information to check against known speed limits 
[69], and more complex methods linked traffic regulations into 
different road types to interrogate whether the current traffic 
participants were abiding by rules [58]. 

G. Performance Metrics  

As hazardous event detection aims to predict hazardous 
events from scene entities, this is both a classification problem 
to detect if there is potential harm and a time-based problem to 
detect early. As such, classification metrics such as accuracy, 
precision and recall are used, and metrics like time-before-
collision for time-based evaluation. It is noted that a common 
limitation is the subjectivity of "hazardous events" if harm is 
not realised. Therefore, qualitative analysis and comparisons 
are also commonplace to contextualise performance.  

Regarding classification tasks, it is important to note key 
terms of positive and negative detections. In the context of 
hazardous event classification, a positive detection would be a 
hazardous event detected, whereas negative detections refer to 
a non-hazardous classification. Whether these predictions are 
true or false are essential to distinguish and can be represented 
in a confusion matrix, which has a total of four outcomes that 
are used to calculate performance metrics: 

 True Positive (TP): Predicted hazardous and the scene 
is hazardous. 

 False Positive (FP): Predicted hazardous but is safe. 

 True Negative (TN): Predicted safe and is safe.  
 False Negative (FN): Predicted safe but is hazardous. 

Classification Metrics: To evaluate classification, the key 
performance indicators (KPIs) are accuracy, precision and 
recall [83], [84]. Accuracy is the ratio of correct predictions 
over all predictions [(TP + TN)/(TP + TN + FP + FN)], but this 
does not consider individual categories. Thus, a detector may 
not detect environmental or regulatory hazards but still score 
highly if those types rarely occur.  

As accuracy does not consider performance over different 
classes, it is also important to review Precision [TP / (TP + FP)]. 
For example, in predicting actor-based hazardous events, the 
precision is the ratio of correct actor predictions over all 
predictions for that class; however, this does not consider 
missed detections. Thus, Recall [TP / (TP + FN)] is required to 
assess how many detections were missed in a scene, which is 

TABLE IV. PERFORMANCE METRICS 

Category Description Benefit Limits         Paper 

Qualitative 
 
 

Based on 
expert verdict 
against 
intended 
functionality 

Tailored to 
specific use 
case 

Can be 
subjective, 
bias and 
hard to 
compare 
between 
studies 

[19], 
[55]–
[57], 
[61], 
[69], 
[70], 
[73] 

Time-Before-
Collision 

(TBC) 

Time between 
prediction and 
collision 

Evaluates 
ability for 
early 
detection 

Does not 
consider 
missed 
detections 

[20], 
[22] 

Accuracy 
 

�� + ��

(��+��+��+��)

 

Ratio of 
correct 
predictions 
over all 
predictions  

Intuitive 
and shows 
general 
model 
ability  

Misleading 
when data 
is not 
balanced  

[20], 
[21], 
[35], 
[55], 
[56], 
[74], 
[79], 
[80] 

Precision 
 

��

�� + ��
 

 

Ratio of true 
positives over 
all positive 
detections 

Can 
evaluate 
quality of 
positive 
detection 

Does not 
consider 
missed 
detections  

[18], 
[59], 
[79], 
[80] 

Mean Average 
Precision 

(mAP) 

Mean across 
average 
precision 
scores for 
each hazard 
type  

Gives an 
overview 
across class 
types 

Does not 
consider 
missed 
detections 

[22], 
[81], 
[82] 

Recall 
 

��

(�� + ��)
 

Ratio of true 
positives over 
all positives 
(TP & FN) 

Evaluates 
ability to 
detect a 
class 

Does not 
consider 
confidence 

[18], 
[59], 
[74], 
[79], 
[80] 

Area Under 
the Receiver 
Operating 

Curve 
(AUROC/ 

AUC) 

Area under 
ROC curve 
that plots true 
positives over 
false positives 

Evaluates 
ability to 
separate 
classes and 
considers 

Skewed 
sample 
distribution 
can lead to 
misleading 
results 

[20], 
[21], 
[71] 

False Negative 
Rate (FNR) 

 
��

�� + ��
 

Ratio of false 
negatives 
over the sum 
of false 
negatives and 
true positives 

Evaluates 
how many 
hazardous 
events 
missed as 
could of led 
to harm 

A system 
can predicts 
all samples 
as positive 
to achieves 
a perfect 
score   

[74] 
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the ratio of correct predictions over all the positive class 
detections in the scene. There is usually a trade-off between 
precision and recall, so these metrics can be plotted on a 
precision-recall curve with precision on the y- and recall on the 
x-axis. This can then be used to calculate Average Precision 
(AP) as the area under the curve and the mean Average 
Precision (mAP), which is the mean of all APs for each class.  

As hazardous event detection is safety-critical, it is preferable 
to have a system that is overly cautious (i.e., False Positive) than 
a system that misses hazards (i.e., False Negative). As such, 
False Negative Rate (FNR) is an important measure to evaluate 
the ratio of missed detections that could have led to harm by 
calculating the ratio of false negatives over the sum of false 
negatives and true positives [FN / (FN + TP)]. As this is a binary 
classification, it can also be plotted with a Receiver Operating 
Characteristic (ROC) curve with the True Positive (i.e., 
probability of detection) rate in the y- and the False Positive rate 
(i.e., probability of false alarm) in the x-axis at various 
thresholds. Using this, the Area Under the Curve (AUC) can be 
calculated. The higher the area, the better the model can 
correctly separate hazards from non-hazards. 

Temporal Forecasting Metrics: To evaluate how far in 
advance prediction occurs, Time-Before-Collision (TBC) is a 
metric used to calculate how many seconds before an accident 
the system can identify the hazardous event and is commonly 
used to evaluate the pre-emptive ability of detection.  

Utilisation: Overall, the most popular metrics were 
accuracy, precision and recall as the hazardous event detection 
task is commonly framed as a binary classification problem 
(i.e., safe 0 or hazardous 1). When reporting performance, 
authors utilised multiple datasets to evaluate the model’s 
capacity to learn, yet only a minority reported on dataset shift 
to assess generalisability to unseen data [20], [21], [79], [80]. 

In addition, self-collected simulation-based datasets were 
utilised as real crash scenes are rare. While simulation is an 
important tool, researchers should be aware of mismatches in 
domain complexity and extractable scene data as one study 
dropped from 91.1% accuracy and 96.2% AUC to 65.3% and 
71.1%, respectively when trained on real-world footage [20].  

Furthermore, even though the key to hazardous event 
detection is to detect before harm, few methods [20], [22] 
evaluated the time-before-collision metric. Though, methods 
show promising results of 4.9-30.9s TBC over short and 
medium duration clips of an average of 5-37.3s respectively. A 
TBC that allows ample reaction time for a human takeover, 
cited to require 2.8-23.8s in best case non-critical takeovers 
[85]. However, evaluation of TBC requires careful 
consideration to avoid scenarios of largely false positive 
detections that would erroneously lead to high TBC. A 
consideration mitigated by [22], which reported TBC with an 
average precision of at least 80%. Similarly, as the hazardous 
event detection task is critical for safety, false negative 
detections are more severe than false positives and represent 
events that could have been allowed to materialise harm. Yet, 
only one reviewed study evaluated the false negative rate [74]. 

H. Datasets 

Training and testing hazardous event detection require 
carefully annotated datasets of hazardous events such as vehicle 

near-miss or collision events that are scarce. With the majority 
of large traffic scene datasets lacking these scenes [4], [86], 
[87], this slowed progress as researchers had to manually 
collect it, filter existing datasets or revert to simulation. With 
increased focus on robust safety testing and limited hazard 
datasets for training, there has been a promising increase in 
recent years. Arranged by hazard categories, the relevant 
datasets are compiled in TABLE V.  

Vehicle Actor: Datasets contain near-miss scenes in which a 
hazardous event was narrowly avoided and scenes in which the 
harm was realised. Datasets use either real dashcam footage or 
are simulation-based to reduce collection time and cost. Of the 
real datasets these include: Anticipating Accidents Dataset [88], 
AnAn Accident Detection (A3D) [89], Car Crash Dataset 
(CCD) [22], Collision [90], Near-miss Incident Database 
(NIBD) [87] and Traffic Accident Benchmark (TAB) [91].  

The largest real dataset is NIBD [87], with 4595 near-miss 
videos, each 10-15s. NIBD  is captured over ten years with one 
hundred taxis using a monocular dashcam and annotated with 
either a high or low level of danger to represent the proximity 
of collision. This allows systems to be trained to understand 
immediate hazardous events that require immediate action 
(TTC < 0.5s, high danger) or potential hazardous events (TTC 
> 2s, low danger). With high scene diversity of intersections, 
highways, residential and parking areas and a roughly even 
balance between day and night illumination. This diversity 
makes this dataset multipurpose for other event categories such 
as road types and illumination contrast.  

Of the synthetic datasets, GTACrash [92] and VIENA [93] 
consist of near-miss and collision scenarios for training. It is 
also common to use driving simulation platforms such as Carla 
[94] for bespoke training/testing. The advantage is creating 
hazardous events that may not readily occur, but the limitation 
is simulated sensory data and predetermined actor behaviour. 

Non-Vehicle Actor: This category contains almost all the 
same datasets as the vehicle category as they extended to 
include pedestrian, bicycle and even animal actors in the case 
of A3D [89]. In [89], 1500 hazardous event videos are captured 
in differing weather conditions (e.g., rain, snow) and locations 

TABLE V. HAZARD FOCUSED DATASETS 

Actor Environment Regulatory 
Motor 

Vehicles 
Non-Motor 

Vehicles 
Static Dynamic 

Traffic 
Laws 

Collision
/ Near 
Miss 
A3D         
[89],         
AAD       
[88],        
CCD            
[22],    

Collision 
[90], 

GTACras
h [92],       
NIBD      
[87],         
TAB        
[91],     

VIENA     
[93] 

Collision/ 
Near Miss 

A3D¹²³ 
[89], 

AAD¹² 
[88], 

Collision¹² 
[90], 

NIBD¹² 
[87], 

VIENA¹ 
[93] 

Obstacle 
BDD 
[96], 
HDD 
[95] 

 
Road 
Type 
A3D 
[89], 
BDD 
[96], 

Collision 
[90], 

NIBD 
[87], 

Málaga 
[97] 

Object 
A3D [89], 
BDD [96],  
TAB [91], 
Lost and 

Found [98] 
 

Adverse 
Weather 
A3D [89],     

ACDC[99], 
CADCD[100]

CCD [22],  
DAWN[101] 

 
Illumination 

Collision 
[90],        

NIDB       
[87], 

NightOwls   
[102] 

Rule 
Breach 
VIENA   

[93] 
 

Traffic 
Lights 
Bosch 
Traffic 
Lights     
[105] 

 
Traffic 
Signs 
LISA 

Traffic 
Signs     
[103] 

German 
Traffic 
Signs        
[104] 

¹ Pedestrian | ² Bicycle | ³ Animal 
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in East Asia. Authors used expert judgement to annotate videos 
when developing hazardous events transitioned to materialised. 

Static Environment: Containing datasets of a naturalistic 
nature as these hazardous events are derived from temporally 
static scene entities. It contains entities such as obstacles from 
parked vehicles, as seen in the Honda Research Institute 
Driving Dataset (HDD) [95], or objects that cause occlusion, as 
seen in Berkley DeepDrive (BDD) [96]. Another static attribute 
is road type, as each type can have varying traffic conditions, 
such as traffic density and location-specific hazards such as 
children in residential areas that suddenly appear behind parked 
cars. These hazards can be trained using datasets with large 
scene diversity, as seen in A3D [89], BDD [96], Collision [90], 
NIBD [87] and Málaga [97]. 

Dynamic Environment: These hazardous events are 
temporally dynamic in time, featuring dynamic objects (e.g., 
road debris) that need to be safely avoided but can be hard to 
identify due to their irregular shape or can appear suddenly. 
Seen within A3D [89], BDD [96],  TAB [91] and in particular, 
Lost and Found [98], which focuses on small road objects.  

In addition, this category also contains adverse weather 
scenes, which can be seen lightly within A3D [89] and CCD 
[22]. Recently, more focused datasets include: Adverse 
Conditions Dataset with Correspondences (ACDC) [99], 
Canadian Adverse Driving Conditions Dataset (CADCD) [100] 
and Detection in Adverse Weather Nature (DAWN) [101]. 
These allow more robust training, which is of particular 
importance due to heavy reliance on vehicle sensors which can 
be impaired with adverse weather (e.g., fog, rain, snow). 
Similarly, changes in illumination can adversely affect vision-
based sensors and as such, varying day and night scenes can be 
tested within Collision [90], NIDB [87] and NightOwls [102], 
which focuses on pedestrian detections in dark, low visibility 
night scenes.  

Traffic Laws: As traffic sign and light recognition is vital 
but highly varied between regions, this category contains 
datasets of scenes containing diverse traffic signs. Found in 
LISA Traffic Signs [103] and German Traffic Signs [104], 
which focus on danger, mandatory and prohibitory traffic signs. 
Traffic lights can also vary in shape and size, with 13 types 
collected in Bosch Small Traffic Lights [105] and sizes as small 
as 2 pixels to train far detection. Such datasets assist systems in 
avoiding the hazardous event of EV traffic violation and in 
detecting other actors in violation. For this, examples such as 
VIENA [93] collect scenes with other actors committing red 
light violations and driving on the wrong side of the road. 

IV. DISCUSSION AND RESEARCH OPPORTUNITIES 

This section critically evaluates the reviewed graph-based 
methods. Followed by the key research challenges and 
opportunities categorised into: domain complexity, data input, 
methodology and testing. Finally, we conclude with the 
limitations of the study. 

A. Evaluation of Methods 

Graph methods are shown as an explainable and scalable 
methodology for knowledge representation, allowing authors to 
model causal factors using graph connectivity. This relational 
representation is key to the early detection of hazardous events 
as they develop but remains challenging due to complex 
interactivity between road users and the environment (e.g., 
weather, road condition), which are not sufficiently understood.  

In the past, authors have tried to incorporate causal 
dependencies by combining expert knowledge with empirical 
ML [18], [35], [71], [72], but developing a robust approach is 
yet to be realised. Methods focus on semantic scene description 
for better hazardous event generalisation and data reduction by 
up to an order of magnitude [106]. Each method reviewed had 
unique advantages and limitations, summarised in TABLE VI.   
 
1) Rule-Based Ontology Methods 

Rule-based ontology methods are popular due to their high 
interpretability and simplicity. They are typically used by 
formulating known hazardous scenario patterns into rules for 
explainable real-time detection. Methods are simple to 
formulate and the graph-based logic makes decisions easy to 
interpret. However, the reasoning is limited to human 
knowledge and is unable to deal with uncertainty. Furthermore, 
user definition can make such methods difficult to scale and 
rules sensitive to bias, and modelled events tend to be simplified 
to allow formulation but leads to shorter predictive horizons. 

In addition, methods primarily used deductive reasoning over 
observable information, which can be occluded or otherwise 
incomplete. To reason with incomplete data, some approaches 
demonstrated the use of abductive reasoning from effect to 
cause [18][35]. Although, demonstrated varying performance 
due to uncertainty over incomplete observations.  

The inclusion of uncertainty or time history is another 
limitation of rule-based ontologies. Methods had no mechanism 
to incorporate the uncertainty of sensor information or store 
how behaviours evolved in time, which is particularly important 
to model interactions. Consequently, in an inherently uncertain 
and temporally dynamic driving domain, these key limitations 
reduce its application for complex hazards but represent a 
method that is both scalable, interpretable and easy to 
implement for hazards that are clear to formulate.  

2) Probabilistic Bayesian Network Methods 

Similar to the rule-based methods, causal relationships can 
be defined using BNs through the manual definition but are 
again limited to current understanding. Unlike rule-based 

TABLE VI: METHOD ADVANTAGES AND LIMITATIONS 

Method Advantages Limitations 

Knowledge 
Rule-Based 
(Ontology) 

•  Simple 
•  Few assumptions 
•  Interpretable 
•  Simple to model 
•  Low complexity  
•  Fast inference 

• Models simple behaviour  
• Short predictive horizon 
• Cannot propagate uncertainties 
• Manual network definition 
• Cannot consider temporal 
evolutions 

Probabilistic 
(Bayesian) 

•  Probabilistic 
prediction 
•  Uncertainty 
propagation  
•  Interpretable  
•  Deductive and 
abductive reasoning 
•  Counterfactual 
reasoning 

•  Difficult to scale  
•  CPTs can be biased if based 
on expert opinion or difficult 
from data, as quantifying 
random variable effect on 
hazardous events can be 
challenging to isolate 
• Must explicitly define network  
• Cannot model cyclic relations  

Machine 
Learning 
(GNN) 

•  Model complex 
behaviour  
•  Ability to 
generalise 
•  Ability for offline 
and potential online 
learning 
•  Can integrate 
with other methods 

•  Lack of interpretability 
• Reduced training data 
•  Dataset annotation can be 
biased or subjective 
• Models overfit to small 
training datasets 
• Poor prediction outside the 
scope of training can lead to 
dangerous behaviour 
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methods, probabilistic BNs are difficult to scale as each 
hazardous event needs to be modelled individually in a graph 
structure with potential interdependencies. 

The relational dependencies also make calculating the CPTs 
challenging as expert scoring can be biased, and data-driven 
approaches require well-annotated specialist datasets, which 
can be challenging to source. This complexity can also spiral if 
using continuous variables over discrete variables.   

On the positives, BNs offer probabilistic predictions with the 
mathematical rigour of Baye's theorem and can be extended to 
consider temporal evolutions using DBNs. BNs also have the 
unique ability for both deductive and abductive reasoning due 
to the bidirectional flow of information. Being able to reason in 
this way conjoins the use of domain expertise (i.e., deduction) 
with logical reasoning (i.e., abduction) in unknown scenarios, 
which gives BNs a distinct advantage over other methods. The 
relations captured using graph connectivity and the CPTs that 
govern such relations also allow counterfactual reasoning. This 
gives BNs a unique ability to understand causal intervention, 
which is critical for hazard mitigation in later processes.  

Another advantage is the ability to propagate uncertainty, as 
AVs rely heavily on a multitude of sensor data with inherent 
noise and computer vision. BNs can incorporate uncertainty by 
revising the probability distributions of all unknown variables, 
given new evidence in known areas of the network. This allows 
BNs to provide a probability distribution over prediction 
possibilities instead of a singular output.  

3) Machine Learning Graph Neural Network Methods 

Looking at GNN implementations, these methods extracted 
actors and objects from a list of detections into a relational 
graph network, used to learn features to detect hazardous events 
based on the spatial and temporal sequences. Automatic feature 
learning gives GNNs superior generalising ability, which is 
crucial in a domain where we cannot manually define all 
hazardous events. Although, this non-deterministic learning 
approach presents a verification hurdle as it is difficult to make 
guarantees about system behaviour in unseen scenarios. These 
approaches are also inherently less interpretable than previous 
methods and dependent on data for training but may synergise 
well in a hybrid methodology.  

A further limitation of the ML approach is that learnt 
hazardous event patterns are based on detected patterns in the 
input data. Methods can mistake weak correlations for causal 
triggers and can be challenging to distinguish, as these weak 
correlations may overfit to training data but may be brittle in 
the real domain. To tackle this, some authors have implemented 
attention-based explainability to allow human validation. 

GNNs also show great room for expansion, as the inference 
ability is directly related to the knowledge graph used to 
represent scene information; representations can be tailored to 
reason hidden relational dependencies to characterise known 
events and help generalise for unknown hazardous events.  

For these reasons, GNNs show a promising research 
opportunity to learn features from relational data that can help 
us identify complex hazardous events not achievable otherwise. 
Given the learning ability of GNNs, this also presents an 
opportunity to synergise with other methods such as rule-based 
or probabilistic BNs. This synergistic approach is especially 
relevant to capturing edge cases that are easier to scale with ML 
methods to produce rough generalisations that are refined by 

expert scoring and reasoned with the other methods into more 
robust frameworks for real-world usage.  

B. Challenges and Opportunities 

Hazardous event detection faces many hurdles and 
opportunities, which we categorise under domain, data, 
methodology and testing to represent the domain complexity, 
data challenges, methodology limits and testing hurdles.  

1) Domain Complexity 

Dynamic: The driving domain is a dynamic network of 
traffic elements that interact in time and space. The challenge is 
decomposing this complex network into its component parts 
and representing how each interacts. How to represent these 
components and interactions remains an open question, but we 
believe graph structures to be a key enabler to this question.   

Interrelated Interactions: Hazardous event evolution can 
be affected by many factors in the driving scene (e.g., road 
users, environment and traffic regulations). In addition, events 
can affect each other and co-occur due to spatial and temporal 
interactions that can be hard to formalise but must be 
understood for robust detection [4], [107], [108]. Authors have 
tried to understand causal dependencies by combining expert 
knowledge with empirical ML methods [18], [35], [71], [72], 
but developing a robust approach is yet to be realised.  

2) Data Input 

Heterogeneous: AVs receive vast amounts of data from 
sensors, communication systems and data streams from the 
cloud, road infrastructure and other vehicles. Thus, the 
challenge is aggregating, filtering, and representing this data for 
detection. We believe graph structures can help aggregate 
irregular inputs and map those inputs and their relationships. To 
demonstrate this, we present influential papers in the literature 
to show the utility of this emerging form of data representation. 

Uncertainty: The data AVs receive may contain vast 
amounts of noisy, incomplete or uncertain data from many 
different sources, ranging from sensor noise to uncertainty from 
the computer vision systems due to complexity and lack of 
interpretability [109]–[111]. Thus, an opportunity is utilising 
the probabilistic methods covered in this survey to quantify and 
cascade uncertainty and modelling limitations through CPTs. 

Sensor Modality: A large number of the methods only 
utilised observable features from an RBG camera that lacks 
depth encoding, which adversely affects localisation ability. 
The lack of accurate depth estimation makes it difficult to 
accurately extract the spatial features necessary to describe 
vehicle movements. Alternatively, simulation is used to extract 
distance from ground truth but has its limitations to practical 
transferability to real behaviour. Thus, accurately extracting 
spatial features from raw image data remains a key opportunity. 

3) Methodology 

Scene Encoding: The knowledge graph representing the 
driving scene must be comprehensive enough to model the 
system dynamics without becoming too complex for real-time 
inference. Hence, there will be an opportunity to test different 
approaches and investigate which scene features are most 
meaningful for prediction and which relations to represent. 



 
 
 

15 

Scalable Framework: As all hazardous events cannot be 
explicitly defined, a vital research question is how we can 
develop a scalable approach to adapt to an ever-changing 
domain. Unknown hazardous events pose the greatest danger as 
they can go undetected and unmitigated. 

Generalisation: The endless types of hazardous events make 
it vital for systems to independently reason unseen dangers. The 
opportunity is to create a generalised hazardous event reasoning 
system using a combination of expert knowledge and data-
driven modelling for generalised inference. For example, we do 
not know all hazardous events, but we have vast databases of 
non-hazardous driving scenes that may be investigated to allow 
anomaly detection and signal novel hazardous events.  

Multi-Type Detection: Methods are generally scenario-
specific, which does not sufficiently cover the driving domain. 
Typically, only actor and simple regulatory hazards are 
considered as they are clear to formulate using colliding 
trajectory or speed checks. In reality, hazardous events do not 
appear in isolation and affect one another, so it is essential to 
understand interrelated causality. For example, adverse weather 
conditions (e.g., fog, haze, rain) can affect visibility and vehicle 
handling and cause other hazardous events as a result.  

Early Detection: The difficulty in hazardous event detection 
is early identification while there is time to react. Rule-based 
methods can only formalise limited complexity events, unlike 
ML approaches that show promising results generalising 
complex events but require sufficient training data and manual 
validation. Early detection requires casual relations to isolate 
the triggering events, but how to achieve this remains unsolved. 

Causal Understanding: Correlation is not causation; 
sometimes, the causal drivers that affect behaviour cannot be 
observed and must be inferred. By focusing on causality, we 
can identify the variables with the most predictive power and 
intervene sooner. In addition, to pre-empt non-observable 
hazardous events such as occluded vehicles and to realise AV 
actions can mitigate an event developing further. Graphs 
provide a framework to build a relational network for inference, 
however, realising a robust framework remains an opportunity. 

Hybrid Method: Given the advantages and limitations of 
each method, future work could investigate a hybrid approach 
to synergise the learning ability of GNNs with the mathematical 
rigour and uncertainty propagation of BNs to determine a 
probabilistic prediction. Subsequently, method synergy and 
cooperation remain an open but vital research question to 
combine the advantages whilst mitigating their limitations. 

Online learning: In a dynamic and continually evolving 
domain, explicitly defining all hazardous events is intractable. 
Thus, one opportunity is to create a ML-based approach capable 
of online learning from live operations to learn continuously.  

4) Testing 

Dataset Availability and Completeness: Vast amounts of 
naturalistic driving data are available, but scenes lack hazardous 
or collision scenarios due to scarcity of occurrences. This 
makes training difficult as researchers must synthesise specific 
edge cases and find an optimal number of tests to run to 
guarantee reasonable domain coverage. More hazardous event-
focused datasets have emerged but lack vital depth information 
or diverse sensor suite information. Thus, an opportunity is to 
generate hazard-focused datasets with rich sensor suite 

coverage that also sufficiently covers the range of possible 
scenarios and edge cases to certify safe behaviour. 

Dataset Annotation: Annotating datasets accurately can be 
challenging as quantifying potential harm can be subjective if 
harm is not realised. In the literature, authors commonly used 
three experts [87], [89], [95], but standardisation, annotating 
hazardous events can be inconsistent, and this makes early 
detection training difficult. One approach was to associate 
hazardous events with a quantifiable metric such as TTC, as 
seen in NIBD [87]. High danger is represented by a TTC < 0.5s 
and low danger with danger with TTC > 2s); however, 
implementations widely vary and are not valid for adverse 
weather or regulatory hazards. This raises the question of how 
to define a unified standard for annotating hazardous events.  

KPI Standardisation: As detection is typically framed as a 
classification problem (e.g., hazardous event/ not), many 
authors use accuracy along with precision and recall to mitigate 
the effects of data imbalance in testing. Detection also has a 
temporal element as we want to detect when harm will occur, 
as seen with the TBC metric adopted in [22], but is not 
evaluated in other works. With each author using different 
metrics, an opportunity would be to propose a unified standard 
to allow meaningful comparison and establish a minimum 
threshold to reasonably guarantee safety.  

Safety Assurance: Some methods lack a mathematical basis 
for safety certification as rule-based methods are commonly 
based on expert knowledge, and ML methods lack 
interpretability. Probabilistic Bayesian methods use conditional 
probability tables but how to generate trustworthy CPTs 
remains unclear. Therefore, an opportunity to synergise data-
driven methods to produce CPTs through empirical data arises 
and could be explored in the future.  

Real-Time Operation: The larger the input, the more 
memory and computational complexity are required for 
processing. To reduce inference costs in terms of time and 
memory, graph structures allow input data to be compressed as 
users define an abstraction of the scene. Differing from CNN-
based methods that input raw 2D images, with one to three 
colour channels. Oppositely, the compact representations used 
by GNNs have exhibited up to 9.3 times faster inference, whilst 
up to 29% higher accuracy over non-graph counterparts [20].  

Further improvements can also be explored, such as how to 
prioritise or filter nearby scene entities to reduce computational 
complexity. However, what to prioritise or filter requires 
investigation, as improper filtering may cause the model to miss 
patterns that are unknown by human understanding. 

Yet, given the importance of the real-time operation, many 
real-time theoretical frameworks suggested did not test with 
real perception sensors or as part of live systems [67], [69]. This 
is sufficient for proof of concept but lacks rigour for real 
implementation. Consequently, the next step is to assess system 
real-time performance to validate if systems can process sensor 
information and provide detections during live operations.  

Realistic Simulations: Due to the hurdles of live system 
prototyping and the dangers of hazardous event testing, 
simulation is popular among authors for speed of development. 
Although authors commonly utilise unrealistic access to ground 
truth or perfect sensor measurements, not representative of the 
real domain. An opportunity is to develop realistic simulation 
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environments by incorporating incomplete, erroneous and 
uncertain sensor data, which may reveal insightful system 
limitations or unexpected system behaviour.  

C. Review Limitations and Mitigation Scheme 

The emerging nature of graph-based methods for hazardous 
event detection narrowed the availability of research for review. 
Therefore, a searching strategy was defined to best capture key 
work and minimise bias. To capture key works, search terms 
were defined using ISO definitions [30], [31] with synonym 
variations and explored in a diverse set of bibliographic 
databases. In addition to backward and forward citation 
searching and citation graph clustering to construct clusters of 
related work through co-citation and bibliographic coupling 
[112]. Likewise, to avoid recency bias, the authors took care to 
include key works in the area ranging from 2012 to 2022. 

It is important to note that though each study relates to 
hazardous event detection, a few works applied to non-vehicle 
applications. However, these methods exemplified state-of-the-
art developments with directly transferrable methodologies. 
Specifically, the recent ontology-based hazardous event 
detection within construction safety monitoring [59], [61]. 
Demonstrating how perception inputs can be related in graph 
ontologies and queried using rules to identify hazardous events. 

V. CONCLUSION 

In an interconnected driving domain, the evolution of 
hazardous events can involve many variables. The challenge of 
detection is to process vast amounts of heterogeneous, uncertain 
and incomplete scene information to detect such events early 
and reliably. With the majority of accidents due to human error, 
understanding human behaviour is vital to enable the transition 
to SAE Level 3+, where AVs will need to safely control all 
driving functions. However, behaviour is complex and affected 
by other actors, the environment, and traffic rules. To tackle this 
challenge, this review takes a novel focus on graph methods to 
decompose a complex driving scene, define causal relations and 
aggregate heterogeneous data. To which, we present an 
overview of approaches from handcrafted graph models to 
recent GNN-based methods to learn multi-variate interactions.  

From the vast range of methods reviewed, the authors found 
that the majority of works identified specific hazardous events 
with success; however, how to combine and connect events for 
comprehensive detection remains unclear. In a domain where it 
is intractable to manually define all events, GNNs presented the 
most scalable approach. However, this non-deterministic 
method presents a validation hurdle as it is less interpretable 
and highly dependent on data for training. Therefore, future 
methods may investigate a hybrid approach to synergise the 
learning ability of GNNs with the mathematical rigour and 
uncertainty propagation of the probabilistic Bayesian methods.  

Ultimately, we need to enable comprehensive and reliable 
hazardous event detection. As how safely vehicles handle 
unknown unsafe scenarios will define the transition from 
human-supervised automated systems to unsupervised 
autonomy, and we present graph-based networks as a promising 
direction to achieve this. 
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