4,127 research outputs found

    Analysis of Hand Segmentation in the Wild

    Full text link
    A large number of works in egocentric vision have concentrated on action and object recognition. Detection and segmentation of hands in first-person videos, however, has less been explored. For many applications in this domain, it is necessary to accurately segment not only hands of the camera wearer but also the hands of others with whom he is interacting. Here, we take an in-depth look at the hand segmentation problem. In the quest for robust hand segmentation methods, we evaluated the performance of the state of the art semantic segmentation methods, off the shelf and fine-tuned, on existing datasets. We fine-tune RefineNet, a leading semantic segmentation method, for hand segmentation and find that it does much better than the best contenders. Existing hand segmentation datasets are collected in the laboratory settings. To overcome this limitation, we contribute by collecting two new datasets: a) EgoYouTubeHands including egocentric videos containing hands in the wild, and b) HandOverFace to analyze the performance of our models in presence of similar appearance occlusions. We further explore whether conditional random fields can help refine generated hand segmentations. To demonstrate the benefit of accurate hand maps, we train a CNN for hand-based activity recognition and achieve higher accuracy when a CNN was trained using hand maps produced by the fine-tuned RefineNet. Finally, we annotate a subset of the EgoHands dataset for fine-grained action recognition and show that an accuracy of 58.6% can be achieved by just looking at a single hand pose which is much better than the chance level (12.5%).Comment: Accepted at CVPR 201

    Detecting Hands in Egocentric Videos: Towards Action Recognition

    Full text link
    Recently, there has been a growing interest in analyzing human daily activities from data collected by wearable cameras. Since the hands are involved in a vast set of daily tasks, detecting hands in egocentric images is an important step towards the recognition of a variety of egocentric actions. However, besides extreme illumination changes in egocentric images, hand detection is not a trivial task because of the intrinsic large variability of hand appearance. We propose a hand detector that exploits skin modeling for fast hand proposal generation and Convolutional Neural Networks for hand recognition. We tested our method on UNIGE-HANDS dataset and we showed that the proposed approach achieves competitive hand detection results

    Summarizing First-Person Videos from Third Persons' Points of Views

    Full text link
    Video highlight or summarization is among interesting topics in computer vision, which benefits a variety of applications like viewing, searching, or storage. However, most existing studies rely on training data of third-person videos, which cannot easily generalize to highlight the first-person ones. With the goal of deriving an effective model to summarize first-person videos, we propose a novel deep neural network architecture for describing and discriminating vital spatiotemporal information across videos with different points of view. Our proposed model is realized in a semi-supervised setting, in which fully annotated third-person videos, unlabeled first-person videos, and a small number of annotated first-person ones are presented during training. In our experiments, qualitative and quantitative evaluations on both benchmarks and our collected first-person video datasets are presented.Comment: 16+10 pages, ECCV 201

    Forecasting Hands and Objects in Future Frames

    Full text link
    This paper presents an approach to forecast future presence and location of human hands and objects. Given an image frame, the goal is to predict what objects will appear in the future frame (e.g., 5 seconds later) and where they will be located at, even when they are not visible in the current frame. The key idea is that (1) an intermediate representation of a convolutional object recognition model abstracts scene information in its frame and that (2) we can predict (i.e., regress) such representations corresponding to the future frames based on that of the current frame. We design a new two-stream convolutional neural network (CNN) architecture for videos by extending the state-of-the-art convolutional object detection network, and present a new fully convolutional regression network for predicting future scene representations. Our experiments confirm that combining the regressed future representation with our detection network allows reliable estimation of future hands and objects in videos. We obtain much higher accuracy compared to the state-of-the-art future object presence forecast method on a public dataset
    • …
    corecore