234 research outputs found

    T2B Model-Experiencing the Successful Conversion of Traditional Enterprise to e-Business

    Get PDF
    Successful selling over the Internet involves organizing the entire value chain around the Internet and determines where they can exploit technology to add value. Such conversion in small and medium size enterprises (SMEs) is still at its enfant stage; knowing on the large enterprises’ experiences, this enlarges the non-empirical qualitative learning and possibilities for empirically testable theories to come up with a well-structured framework for such conversion. Based on theories from technological innovation literature, this paper presents an integrated model for T2E (Traditional to Electronic) business conversion for SME. Our novel T2E model makes use of a 3-layers hybrid approach: which unifies the technique of IDEF [Integrated Computer-Aided Manufacturing (ICAM) DEFfinition] to assist in business process design; the concept of Business Process Reengineering (BPR) for business structure re-organization; and Innovation Diffusion (ID) theory for progressive introduction of new e-business functions. Our model is intended to minimize the impact of operational and cultural changes on SMEs while taken the critical successful factors of e-business projects in consideration. The feasibility of our conceptual framework is testified by a case study SME - Valentino World Fashion (VW), Inc

    MGMT 340 Production and Operations Management

    Get PDF
    Course syllabus for MGMT 340A Production and Operations Management Course description: Introduces operations management, including examples from both manufacturing and services. Topics covered include product and service design, process design, forecasting, inventory management, scheduling, and logistics, with particular emphasis given to quality management and process improvement

    Development Of A Computer Simulation Game Using A Reverse Engineering Approach

    Get PDF
    Business simulation games are widely used in the classroom to provide students with experiential learning opportunities on business situations in a dynamic fashion. When properly designed and implemented, the computer simulation game can be a useful educational tool by integrating separate theoretical concepts and demonstrating the nature of actual business decisions. This article presents the author’s reverse engineering approach in developing a simulation game for an operations management course. With the ultimate goal of enhancing student learning, the project’s objective was to develop a focused game with easy to use tools and controls that could be played in the last three weeks of a semester. Based on an old simulation game, PROSIM III, the new system eliminated rarely used modules and complex rules, and focused on the planning and scheduling aspects of the original game. New analysis tools and attractive screens were added and the simulation process was simplified by employing Internet technologies. Survey responses showed that the new system, PROSYS, was well received by the students. The methodology, findings and experiences presented in this article should be beneficial for other instructors considering similar projects

    A Discrete-Event Simulation Metamodel for Obtaining Simulation Models from Business Process Models

    Get PDF
    Organizations need to be agile and fl exible to meet the continuous changes. Business Process Management (BPM) is harnessing the continuous changes suffered by organizations in the value chain and, therefore, in their processes. Simulation models offer the ability to experience different decisions and analyze their results in systems where the cost or risk of actual experimentation are prohibitive. BPMN models are not directly executable nor is it possible to simulate their behavior in various input parameters. This paper proposes the application of model-driven engineering (MDE) to integrate the defi nition of business processes with Discrete- Event Simulation (DES) as a tool to support decision-making. We propose a platform independent DES metamodel and a set of rules, to automatically generate the simulation model from BPMN 2.0 based business process in accordance with previous metamodel.Ministerio de Economía y competitividad TIN2010- 20057- C03-02Ministerio de Economía y Competitividad TIN2010-20057-C03-03Junta de Andalucía TIC-5789Junta de Andalucía TIC-19

    BIM Integrated and Reference Process-based Simulation Method for Construction Project Planning

    Get PDF
    Die Verwendung von Simulationen zur Unterstützung traditioneller Planungsverfahren für Bauprojekte hat viele Vorteile, die in verschiedenen akademischen Forschungen vorgestellt wurden. Viele Anwendungen haben erfolgreich das Potenzial der Simulationsmethode zur Verbesserung der Qualität der Projektplanung demonstriert. Doch eine breite Anwendung der Simulationsmethoden zur Unterstützung der Planung von Bauprojekten konnte sich in der Praxis bis zum jetzigen Zeitpunkt nicht durchsetzen. Aufgrund einiger großer Hindernisse und Herausforderungen ist der Einsatz im Vergleich zu anderen Branchen noch sehr begrenzt. Die Komplexität sowie die dynamischen Wechselprozesse der unterschiedlichen Bauvorhaben stellen die erste Herausforderung dar.Die Anforderungen machen es sehr schwierig die verschieden Situationen realistisch zu modellieren und das Verhalten von Bauprozessen und die Interaktion mit den zugehörigen Ressourcen für reale Bauvorhaben darzustellen. Das ist einer der Gründe für den Mangel an speziellen Simulationswerkzeugen in der Bauprojektplanung. Die zweite Herausforderung besteht in der großen Menge an Projektinformationen, die in das Simulationsmodell integriert und während des gesamten Lebenszyklus des Projekts angepasst werden müssen. Die Erstellung von Simulationsmodellen, Simulationsszenarien sowie die Analyse und Verifizierung der Simulationsergebnisse ist langwierig. Ad-hoc Simulation sind daher nicht möglich. Zur Erstellung zuverlässiger Simulationsmodelle sind daher umfangreiche Ressourcen und Mitarbeiter mit speziellen Fachwissen erforderlich. Die vorgestellten Herausforderungen verhindern die breite Anwendung der Simulationsmethode zur Unterstützung der Bauprojektplanung und das Einsetzen der Software als wesentlicher Bestandteil des Arbeitsablaufes für die Bauplanung in der Praxis. Die Forschungsarbeit in dieser Arbeit befasst sich mit diesen Herausforderungen durch die Entwicklung eines Ansatzes sowie einer Plattform für die schnelle Aufstellung von Simulationsmodellen für Bauprojekte. Das Hauptziel dieser Forschung ist die Entwicklung eines integrierten und referenzmodellbasierten BIM Simulationsansatz zur Unterstützung der Planung von Bauprojekten und die Möglichkeit der Zusammenarbeit aller am Planungs- und Simulationsprozess beteiligten Akteure. Die erste Herausforderung wird durch die Einführung eines RPM-Konzepts (Reference Process Model) durch die Modellierung von Konstruktionsprozessen unter Verwendung von Business Process Modeling and Notation (BPMN) angegangen. Der Vorteil der RPM Modelle ist das sie bearbeitet und modifiziert können und dass sie automatisch als einsatzbereite Module in Simulationsmodelle umgewandelt werden können. Die RPM-Modelle enthalten auch Informationen zu Ressourcenanforderungen und andere verwandte Informationen für verschiedene Baubereiche mit unterschiedlichen Detaillierungsgraden. Die Verwendung von BPMN hat den Vorteil, dass die Simulationsmodellierung für das Projektteam, einschließlich derjenigen, die sich nicht mit der Simulation auskennen, flexibler, interoperabler und verständlicher ist. Bei diesem Ansatz ist die Modellierung von Referenzprozessmodellen vollständig von den Simulationskernkomponenten getrennt, um das Simulations-Toolkit generisch und erweiterbar für verschiedenste Konstruktionsbereiche wie Gebäude und Brücken. Der vorgestellte Forschungsansatz unterstützt die kontinuierliche Anwendung von Simulationsmodellen während des gesamten Projektlebenszyklus. Die Simulationsmodelle, die zur Unterstützung der Planung in der frühen Entwurfsphase erstellt werden, können von Simulationsexperten während der gesamten Planungs- und Bauphase weiter ausgebaut und aktualisiert werden. Die zweite Herausforderung wird durch die direkte Integration der Building Information Modeling (BIM) -Methode in die Simulationsmodellierung auf der Grundlage des Industry Foundation Classes-IFC (ISO 16739) , dem am häufigsten verwendeten BIM-Austauschformat, angegangen. Da die BIM-Modelle einen wichtigen Teil der Eingabeinformationen von Simulationsmodellen enthalten, können sie als Grundlage für die Visualisierung von Ergebnissen in Form von 4D-BIM-Modellen verwendet werden. Diese Integration ermöglicht die schnelle und automatische Filterung und Extraktion sowie die Umwandlung notwendiger Informationen aus BIM Entwurf-Modellen. Um die Erstellung detaillierter Projektmodelle zu beschleunigen, wurde eine spezielle Methode für die halbautomatische Top-Down-Detaillierung von Projektstammmodelle entwickelt, die notwendige Eingangsdaten für die Simulationsmodelle sind. Diese Methode bietet den Vorteil, dass Konstruktionsalternativen mit minimalen Änderungen am Simulationsmodell untersucht werden können. Der entwickelte Ansatz wurde als Software- Prototyp in Form eines modularen Construction Simulation Toolkit (CST) basierend auf der Discrete Event Simulation (DES)- Methode und eines Collaboration- Webportals (ProSIM) zum Verwalten von Simulationsmodellen implementiert. Die so eingebettete Simulation ermöglicht mit minimalen Änderungen die Bewertung von Entwurfsalternativen und Konstruktionsmethoden auf den Bauablauf. Produktions- und Logistiksvorgänge können gleichzeitig in einer einheitlichen Umgebung simuliert werden und berücksichtigen die gemeinsam genutzten Ressourcen und die Interaktion zwischen Produktions- und Logistikaktivitäten. Es berücksichtigt auch die Änderungen im Baustellenlayout während der Konstruktionsphase. Die Verifizierung und Validierung des vorgeschlagenen Ansatzes wird durch verschiedene hypothetische und reale Bauprojekten durchgeführt.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 ReferencesUsing simulation to support construction project planning has many advantages, which have been presented in various academic researches. Many applications have successfully demonstrated the potential of using simulation to improve the quality of construction project planning. However, the wide adoption of simulation has not been achieved in practice yet. It still has very limited use compared with other industries due to some major obstacles and challenges. The first challenge is the complexity of construction processes and projects planning methods, which make it very difficult to develop realistic simulation models of construction processes and represent their dynamic behavior and the interaction with project resources. This led to lack of special simulation tools for construction project planning. The second challenge is the huge amount of project information that has to be integrated into the simulation model and to be maintained throughout the design, planning and construction phases. The preparation of ad-hoc simulation models and setting up different scenarios and verification of simulation results usually takes a long time. Therefore, creating reliable simulation models requires extensive resources with advanced skills. The presented challenges prevent the wide application of simulation techniques to support and improve construction project planning and adopt it as an essential part of the construction planning workflow in practice. The research work in this thesis addresses these challenges by developing an approach and platform for rapid development of simulation models for construction projects. The main objective of this research is to develop a BIM integrated and reference process-based simulation approach to support planning of construction projects and to enable collaboration among all actors involved in the planning and simulation process. The first challenge has been addressed through the development of a construction simulation toolkit and the Reference Process Model (RPM) method for modelling construction processes for production and logistics using Business Process Modelling and Notation (BPMN). The RPM models are easy to understood also by non-experts and they can be transformed automatically into simulation models as ready-to-use modules. They describe the workflow and logic of construction processes and include information about duration, resource requirements and other related information for different construction domains with different levels of details. The use of BPMN has many advantages. It enables the understanding of how simulation models work by project teams, including those who are not experts in simulation. In this approach, the modelling of Reference Process Models is totally separated from the simulation core components. In this way, the simulation toolkit is generic and extendable for various construction types such as buildings, bridges and different construction domains such as structural work and indoor operations. The presented approach supports continuous adoption of simulation models throughout the whole project life cycle. The simulation model which supports project planning in the early design phase can be continuously extended with more detailed RPMs and updated information through the planning and construction phases. The second challenge has been addressed by supporting direct integration of Building Information Modelling (BIM) method with the simulation modelling based on the Industry Foundation Classes IFC (ISO 16739) standard, which is the most common and only ISO standard used for exchanging BIM models. As the BIM models contain the biggest part of the input information of simulation models and they can be used for effective visualization of results in the form of animated 4D BIM models. The integration between BIM and simulation enables fast and semi-automatic filtering, extraction and transformation of the necessary information from BIM models for both design and construction site models. In addition, a special top-down semi-automatic detailing method was developed in order to accelerate the process of preparing detailed project schedules, which are essential input data for the simulation models and hence reduce the time and efforts needed to create simulation models. The developed approach has been implemented as a software prototype in the form of a modular Construction Simulation Toolkit (CST) based on the Discrete Event Simulation (DES) method and an online collaboration web portal 'ProSIM' for managing simulation models. The collaboration portal helps to overcome the problem of huge information and make simulation models accessible for non simulation experts. Simulation models created by CST toolkit facilitate the evaluation of design alternatives and construction methods with minimal changes in the simulation model. Both production and logistic operations can be simulated at the same time in a unified environment and take into account the shared resources and the interaction between production and logistic activities. It also takes into account the dynamic nature of construction projects and hence the changes in the construction site layout during the construction phase. The verification and validation of the proposed approach is carried out through various academic and real construction project case studies.:1 Introduction: motivation, problem statement and objectives 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Thesis Structure 2 Definitions, Related work and background information 2.1 Simulation definition 2.2 Simulation system definition 2.3 Discrete Event Simulation 2.5 How simulation works 2.6 Workflow of simulation study 2.7 Related work 2.8 Traditional construction planning methods 2.8.1 Gantt chart 2.8.2 Critical Path Method (CPM) 2.8.3 Linear scheduling method/Location-based scheduling 2.9 Business Process Model and Notation 2.10Workflow patterns 2.10.1 Supported Control Flow Patterns 3 Reference Process-based Simulation Approach 3.1 Reference Process-based simulation approach 3.2 Reference Process Models 3.3 Reference process model for single task 3.4 Reference process models for complex activities 3.5 Process Pool 3.6 Top-down automatic detailing of project schedules 3.7 Simulation model formalism 3.8 Fundamental design concepts and application scope 4 Data Integration between simulation and construction Project models 4.1 Data integration between BIM models and simulation models 4.1.1 Transformation of IFC models to Graph models 4.1.2 Checking BIM model quality 4.1.3 Filtering of BIM models 4.1.4 Semantic enrichment of BIM models 4.1.5 Reference process models and BIM models 4.2 Reference Process Models and resources models 4.3 Process models and productivity factors 5 Construction Simulation Toolkit 5.1 System architecture and implementation 5.2 Basic steps to create a CST simulation model 5.3 CST Simulation components 5.3.1 Input components 5.3.2 Process components 5.3.3 Output components 5.3.4 Logistic components 5.3.5 Collaboration platform ProSIM 6 Case Studies and Validation 6.1 Verification and Validation of Simulation Models 6.2 Verification and validation techniques for simulation models 6.3 Case study 1: generic planning model 6.4 Case study 2: high rise building 6.4.1 Scenario I: effect of changing number of workers on structural work duration 6.4.2 Scenario II: simulation of structural work on operation level 6.4.3 Scenario III: automatic generation of detailed project schedule 6.5 Case study 3: airport terminal building 6.5.1 Multimodel Container 6.5.2 Scenario I: automatic generation of detailed project schedule 6.5.3 Scenario II: Find the minimal project duration 6.5.4 Scenario III: construction work for a single floor 7 Conclusions and Future Research 7.1 Conclusions 7.2 Outlook of the possible future research topics 7.2.1 Integration with real data collecting 7.2.2 Multi-criteria optimisation 7.2.3 Extend the control-flow and resource patterns 7.2.4 Consideration of further structure domains 7.2.5 Considering of space allocation and space conflicts 8 Appendix - Scripts 9 Appendix B - Reference Process Models 9.1 Reference Process Models for structural work 9.1.1 Wall 9.1.2 Roof 9.1.3 Foundations 9.1.4 Concrete work 9.1.5 Top-Down RPMs for structural work in a work section 10 Appendix E 10.1 Basic elements of simulation models in Plant Simulation 10.2 Material Flow Objects 11 Reference

    Simulation of an Affordable Fly-By-Wire System for Small Commercial Aircraft

    Get PDF

    Development of a Process Modelling System for Simulation

    Get PDF
    This thesis details the development of a process modelling technique to aid a simulation model developer during the requirements gathering and conceptual modelling phases of a simulation project. There are a number of process modelling techniques available that are capable of being used during such phases of a simulation project, however there is currently a lack of process modelling techniques developed specifically to aid a simulation model developer in capturing, representing and communicating information and systems issues to persons involved in the operation of discrete systems under investigation. A detailed review of the literature related to techniques capable of supporting the pre-simulation phases of a simulation project is presented. The main conclusion of this review is that there is a specific lack of support available to aid a simulation model developer in the pre-coding phases of a simulation project. Currently there are no process modelling techniques available that specifically support the pre-simulation phases of a discrete event simulation project. To attempt to overcome this shortfall the thesis discusses the development of a process modelling technique specifically developed to support the pre-simulation phases of a simulation project. Objectives in the development of this technique were to develop a technique that: 1. Is capable of capturing a detailed description of a Discrete Event System; 2. Has a low modelling burden and therefore is capable of being used by non specialists; 3. Presents modelling information at a high semantic level so that manufacturing personnel can rationalise with it; 4. Has good visualisation capabilities. The technique developed is called Simulation Activity Diagrams (SADs). To demonstrate the ability of the SAD technique to model discrete event information a prototype process modelling tool, Process Modelling for Simulation (PMS) was developed. An evaluation of the SAD technique is then presented through of a number of real and conceptual discrete event systems used to examine the techniques ability to accurately model information along with its ease of use and modelling accuracy. The thesis concludes that more research is required in validating and developing SADs and in developing other techniques in the pre-simulation area
    corecore