SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2000; 5: 183-195 (2000)

Understanding Software
Process Redesign using
Modeling, Analysis and

Simulation

Walt Scacchi**

Research Section

Institute for Software Research and Information and Computer Science
Department, University of California at Irvine, Irvine, CA 92697-3425

USA

Software process redesign (SPR) is concerned with the development and application of
concepts, techniques and tools for dramatically improving or optimizing software processes.
This paper introduces how software process modeling, analysis and simulation may be used
to support software process redesign. This includes an approach to explicitly modeling
process redesign knowledge, analyzing processes for redesign, and simulating processes
before, during and after redesign. A discussion follows which identifies a number of topic
areas that require further study in order to make SPR a subject of software process research
and practice. Copyright [J 2000 John Wiley & Sons Ltd

KEY WORDS: software process; process redesign; business process redesign; process modeling and simulation

1. OVERVIEW

Software process improvement (SPI) has traditionally
been focused on addressing how to improve the
capabilities of a software development organization
through maturing and comparative benchmarking
of its software processes. The Capability Maturity
Model from the Software Engineering Institute is
the most visible SPI initiative of its kind. However,
the CMM is targeted to incremental improvement of
existing software processes. The CMM top-most
level, Optimization (level 5), characterizes those

*Correspondence to: Walt Scacchi, Institute for Software
Research and Information and Computer Science Department,
University of California at Irvine, Irvine, CA 92697-3425, USA
*E-mail: Wscacchi@ics.uci.edu

Contract/grant sponsor: Office of Naval Research;
contract/grant number: N00014-94-1-0889
Contract/grant sponsor: Defense Acquisition University;

contract/grant number: N487650-27803

Copyright 00 2000 John Wiley & Sons, Ltd.

organizations whose software processes are
incrementally improved and refined through moni-
toring, measurement and reflexive analysis of well-
defined and well-managed processes. However, the
CMM does not provide specific guidance for how
to improve specific software development or software
use processes, nor does it provide guidance for how
to redesign legacy processes or how to design new
processes. In addition, there is no maturity level that
prescribes how to dramatically optimize software
processes to achieve a 10x improvement in pro-
ductivity or quality through radical transformation
(Shelton 1999). Are radical transformations of
software processes of the same kind as incremental
evolutionary improvements? Probably not, though
they appear to lie along a common dimension or
metric that characterizes the scale or scope of process
change that is sought. As such, software process
redesign (SPR) merits investigation to determine
whether and how it might lead to dramatic improve-
ments in process efficiency or effectiveness.

% Research Section

The study presented in this paper describes how
concepts, techniques and tools for software process
modeling, analysis and simulation may be
employed to support SPR studies. In particular,
three research questions that explore and elaborate
these topics can be identified as follows:

e What is software process redesign?

e How can modeling, analysis and simulation
help in redesigning software processes?

e What approach is needed for acquiring, check-
ing and applying the knowledge required to
dramatically and continuously improve
software processes?

Accordingly, in the sections that follow, each
of these questions is addressed, elaborated and
investigated in turn.

2. WHAT IS SOFTWARE PROCESS
REDESIGN

SPR is concerned with identification, application
and refinement of new ways to dramatically
improve and transform software processes.
Software processes of interest include not only
those associated with software development, but
also those for software system acquisition, use and
evolution (Scacchi and Boehm 1998, Scacchi and
Mi 1997, Scacchi and Noll 1997). Process redesign
heuristics, and the source materials from which
they are derived, serve as the main source of
knowledge for SPR (see Scacchi and Noll 1997,
Valente and Scacchi 1999). Process redesign heuris-
tics can be independent of application domain and
therefore applicable to a large set of processes
(Bashein et al. 1994, Caron et al. 1994). Alternatively,
redesign heuristics may be domain-specific, thus
applicable to specific processes in particular set-
tings. In examining how SPR heuristics are applied,
we can learn the circumstances in which different
types of heuristics or practices are most effective
or least effective (see Software Programs Managers
Network 1999). Similarly, we can learn which
process redesigns are considered most effective
and desirable in the view of the participants
working in the redesigned process, and what
techniques should be employed to facilitate process
transformation and change management (Kettinger
and Grover 1995, Scacchi and Noll 1997, Valente
and Scacchi 1999). Therefore, both domain-

Copyright 00 2000 John Wiley & Sons, Ltd.
184

W. Scacchi

independent and domain-specific SPR heuristics
are of interest, as are techniques for determining
how to transform the organizational settings in
which they are to be applied.

Source materials represent on-line narrative
reports from formal analyses, case studies, best
practices, experience reports and lessons learned
for how to dramatically improve the cycle time,
defect prevention and cost effectiveness of various
kinds of software/business processes. Increasingly,
these materials can be found on the World-
Wide Web as on-line publications or hypertext
documents. For example, we can all use search
engines on the Web to conduct a global search
and information retrieval. Though we may find
little matching a search for ‘software process
redesign’, a search for ‘process redesign’ or “process
re-engineering’ will return much more. Here we
might find case studies, experience reports, best
practices or lessons learned as narrative documents
posted on academic, non-profit or commercial sites.
Clearly, the quality of the ‘knowledge’ and results
gleaned from sources on the Web may be more
variable than those found in system research
studies, but in searching for SPR heuristics, when
potentially relevant source materials are found,
hyperlinks can be used to designate the connection
between the materials and the heuristics they
instantiate. In turn, when a heuristic is a potential
candidate for use in redesigning a software process,
its source materials can be browsed and re-
examined to help determine its similarity, rel-
evancy, trajectory or outcome. Subsequently, as
interest in SPR activities and outcomes grows, then
more SPR case studies, experience reports, lessons
learned, best practices, counter-examples and
caveats may soon find their way onto the Web
(Maurer and Holz 1999). Thus, the development
of SPR heuristics or SPR knowledge repositories
should be viewed as areas for further research,
while their application should be integrated in
continuous process improvement initiatives, rather
than as topics that can be exhaustively analyzed
with limited effort.

3. HOW CAN MODELING, ANALYSIS
AND SIMULATION HELP SPR

There is a growing body of studies and techniques
that address the modeling, analysis and simulation

Softw. Process Improve. Pract., 2000; 5: 183-195

% Research Section

of software processes (ProSim 1999), yet none of
the extant studies addresses the subject of SPR as
their primary focus. However, SPR is often implicit
as a motivating factor in practical applications of
software process modeling and simulation. As
such, how can modeling, analysis and simulation
of software processes be employed to directly
support SPR?

3.1. Modeling Process Redesign Knowledge

As already noted, SPR knowledge is often cast as
heuristics derived from results of empirical or
theoretical studies. These results may then be
coded as production rules for use in a rule-based
or pattern-directed inference system (Nissen 1997),
or as tuples (i.e. records of relation attribute
instance values) that can be stored in a relational
database (Kuh ef al. 1996). These mechanisms can
then be integrated with other tools for software
process engineering (Brownlie et al. 1997, Scacchi
and Mi 1997). However, these alternative represen-
tation mechanisms do not focus on what needs to
be modeled, which is the focus here.

From a modeling standpoint, there is need to
potentially model many kinds and forms of SPR
knowledge. These include: (a) the process to be
redesigned in its legacy ‘as-is’ form before redesign;
(b) the redesign heuristics (or transformations) to
be applied; (c) the ‘to-be’ process resulting from
redesign; and (d) the empirical sources (e.g. narra-
tive case studies) from which the heuristics were
derived. Furthermore, we might also choose to
model (e) the sequence of steps (or the ‘here-to-
there’ process) through which different redesign
heuristics were applied to progressively transform
the as-is process into its to-be outcome. Modeling
the processes identified in (a), (c) and (e) is
already within the realm of process modeling and
simulation capabilities. However, (b) and (d) pose
challenges not previously addressed by software
process modeling technologies. Furthermore, (b)
and (d) must be interrelated or interlinked to the
process models of (a), (c) and (e) to be of greatest
value for external validation, traceability and
incremental evolution purposes (Valente and Scac-
chi 1999, Zelkowitz and Wallace 1998). Finally,
software process modeling will play a role in (f)
facilitating the continuing evolution and refinement
of the SPR knowledge web.

Copyright 00 2000 John Wiley & Sons, Ltd.

Software Process Redesign

3.2. Analyzing Processes for Redesign

Software process models can be analyzed in a
number of ways (Mi and Scacchi 1990, Scacchi and
Mi 1997). These analyses are generally targeted to
improving the quality of the process model, as
well as to detect or prevent common errors and
omissions that appear in large models (Scacchi
1999). None the less, software process redesign
poses additional challenges when analyzing pro-
cess models.

First, it is necessary to analyze the consistency,
completeness, traceability and correctness of mul-
tiple, interrelated process models (e.g. the as-is,
here-to-there and to-be models). This is somewhat
analogous to what happens in a software develop-
ment project when multiple notations (e.g. for
system specification, architectural design, coding
and testing) are used, therefore requiring analysis
across, as well as within, different software
model notations.

Second, it is necessary to account for software
process resources throughout the redesign effort.
For example, are resources that appear in an as-is
process replicated, replaced, subsumed or removed
in the to-be process? SPR can change the flow of
resources through a process, and thus we want to
observe and measure these changes on process per-
formance.

Last, one approach to determining when domain-
independent process redesign heuristics can apply
results from measuring structural attributes of the
formal or internal representation (e.g. a semantic
network or directed attributed graph) of a process
as index for selecting process redesign heuristics
(Nissen 1997, Nissen 1998, Scacchi and Noll 1997).
Each of these challenges necessitates further
description and refinement, as well as characteriz-
ing how they can interact in a simplifying or
complicating manner.

3.3. Simulating Processes Before, During and
After Redesign

Software process models can be simulated in a
number of interesting and insightful ways using
either knowledge-based, discrete-entity or system
dynamics systems (ProSim 1999, Scacchi 1999).
However, is there still need for another type of
system to simulate processes performed by process
users, and under their control?

Softw. Process Improve. Pract., 2000; 5: 183-195
185

% Research Section

When considering the role of simulation in
supporting software process redesign, a number
of challenges arise. For example, how much of
a performance improvement does an individual
redesign heuristic realize? Will different process
workload or throughput characterizations lead to
corresponding variations in simulated performance
in both as-is and to-be process models? How
much of a performance improvement do multiple
redesign heuristics realize, again when considered
with different workloads or throughputs? Can
simulation help reveal whether all transformations
should be applied at once, or whether they should
be realized through small incremental redesign
improvements? As such, simulation in the context
of SPR raises new and interesting problems requir-
ing further investigation and experimentation.

As suggested earlier, there is need to simulate
not only as-is and to-be processes but also the
here-to-there transformation processes. Following
from the results in the BPR research literature,
transforming an as-is process into its to-be counter-
part requires organizational change management
considerations. The process users who should be
enacting and controlling the transformation process
can benefit from, and contribute to, the modeling
and analysis of as-is processes (Scacchi and Mi
1997, Scacchi 1999). Similarly, users can recognize
possible process pathologies when observing
graphic animations of process simulations. How-
ever, the logic of the process simulation may not
be transparent or easy to understand in terms that
process users can readily comprehend.

Conventional approaches to process simulation
may not be empowering to people who primarily
enact software use processes (see Scacchi and Noll
1997). Instead, another option may be needed: one
where process users can interactively traverse (i.e.
simulate) a new to-be process, or the here-to-
there process, via a computer-supported process
walkthrough or flythrough. In such a simulation,
user roles are not simply modeled as objects or
procedural functions; instead, users play their own
roles in order to get a first-person view and feel
for the new process. This is analogous to how
‘flight simulators’ are used to help train aircraft
pilots. In so doing, user participation may raise a
shared awareness of which to-be alternatives make
the most sense, and how the transformations
needed to transition from the as-is to to-be process
should be sequenced within the organizational

Copyright 00 2000 John Wiley & Sons, Ltd.
186

W. Scacchi

setting. As such, simulation for SPR raises the
need for new approaches and person-in-the-loop
simulation environments.

4. APPROACH AND RESULTS

Given the challenges identified in the previous
section on how modeling, analysis and simulation
can support SPR, this section presents the approach
and initial results from an effort in each of these
three areas.

4.1. Modeling Approach and Results

In developing models of processes for SPR, we
used two tools. First, in order to represent SPR
knowledge formally and reason with it, the Loom
knowledge representation system was selected
(MacGregor and Bates 1995). Loom is a mature
language and environment for constructing
ontologies and intelligent systems that can be
accessed over the Web (Valente etal. 1999). By
using Loom to re-implement the Articulator process
meta-model ontology (Mi and Scacchi 1990, 1996),
formal models of software (or business) processes,
classification taxonomies and process redesign
heuristics can be represented and manipulated. In
turn, process knowledge can be analyzed, queried
and browsed, while relevant redesign alternatives
for processes can be identified and linked to source
materials on the Web. None the less, Loom
does impose a discipline for formally representing
declarative knowledge structures in terms of con-
cepts (object or pattern types), relations (link types
that associate concepts) and instances (concept,
link, attribute values).

Loom’s deductive classifier utilizes forward-chain-
ing, semantic unification and object-oriented truth
maintenance technologies. This capability enables
Loom to compile the declarative knowledge into
a semantic network representation designed to
efficiently support on-line deductive query pro-
cessing (MacGregor and Bates 1995, Valente et al.
1999). Further, Loom’s classifier can be wused
to taxonomically classify and update the SPR
knowledge base as new SPR cases are entered and
formally modeled. This in turn enables the SPR
knowledge web to evolve with automated support
(Valente and Scacchi 1999).

Second, in order to support the visualization of

Softw. Process Improve. Pract., 2000; 5: 183-195

Research Section

the knowledge bases and process models that have
been constructed, a Web browser interface to
the Loom system is used (Valente etal. 1999).
Ontosaurus (1999) is a client-side tool for accessing
a Loom server loaded with one or more knowledge
bases. It supports queries to Loom and produces
Web pages describing several aspects of a knowl-
edge base, including hypertext links to materials
on the Web. It is also able to provide simple
facilities for editing the contents of knowledge
bases. Figure 1 shows a browser window accessing
Ontosaurus. The display consists of three window
panels: Toolbar (top); Reference (left side), and
Content (right side). The Toolbar panel consists of
buttons to perform various operations such as
select domain theory, display theory, save updates etc.
The Reference and Content panels are designed to
display contents of a selected ontology. Links in
both panels display their contents in the Content
window. This facilitates exploring various links
associated with a word or concept in the Reference
window without the need to continuously go back
and forth. The bookmark window holds user-
selected links for Web pages to Ontosaurus pages,
and is managed by the buttons in the bottom of
the bookmark window.

Software Process Redesign

Loom and Ontosaurus were used to prototype
a knowledge-based system that can represent
and diagnose software process models, redesign
heuristics and taxonomies, as well as manage
hyperlinks to materials accessible on the Web.
The system employs the Articulator ontology of
software and business processes (Mi and Scacchi
1990, 1996) that are expressed as concepts, attri-
butes, relations and values in Loom. Loom provides
a semantic network framework based on descrip-
tion logics. Nodes (objects) in a Loom representation
define concepts that have roles or slots to specify
their attributes. A key feature of description logic
representations is that the semantics of the represen-
tation language are very precisely specified. This
precise specification makes it possible for the
classifier to determine whether one concept sub-
sumes another based solely on the formal definitions
of the two concepts. The classifier is an important
tool for evolving ontologies because it can be used
to automatically organize a set of Loom concepts
into a classification hierarchy or taxonomy based
solely on their definitions. This capability is parti-
cularly important as the ontology becomes large,
since the classifier will find subsumption relations
that people might overlook, as well as modeling

Figure 1. Ontosaurus display with Process concept definition loaded in the Reference window and a process redesign

instance in the Contents window

Copyright 00 2000 John Wiley & Sons, Ltd.

Softw. Process Improve. Pract., 2000; 5: 183-195
187

% Research Section

errors that could make the knowledge base incon-
sistent.

Overall, 30 process redesign heuristics were
identified and classified. Six taxonomies were also
identified for grouping and organizing access to
the process redesign materials found on the Web.
These taxonomies classify and index the cases
according to:

o Generic type of organization or application domain
for process redesign — financial, manufacturing,
research, software development etc.

e As-is ‘problems’ with existing process — off-line
information processing, workflow delays, lack
of information sharing etc.

o To-be ‘solutions’ (goals) sought for redesigned
process — automate off-line information pro-
cessing tasks, streamline workflow, use e-mail
and databases to share information, etc.

e Use of intranet, extranet or Web-based process
redesign solutions — build intranet portal for
project staff information, store version-
controlled software development objects on
Web server, use HTML forms for data entry
and validation process steps etc.

e SPR how-to guidelines or lessons learned — explicit
techniques or steps for how to understand
and model the as-is process, identify process
redesign alternatives, involve process users in
selecting redesign alternatives etc.

e SPR heuristics — parallelize sequence of mutually
exclusive tasks, unfold multi-stage
review /approval loops, disintermediate or flat-
ten project management structures, move pro-
cess or data quality validation checks to the
beginning, logically centralize information that
can be shared rather than routed etc.

In turn, each of these taxonomies could be rep-
resented as hierarchically nested indices of Web
links to the corresponding cases. Navigation
through nested indices that are organized and
presented as a ‘portal’ site is familiar to Web users.
Typically, each taxonomy indexes 60-120 case
studies or narrative reports out of the total of more
than 200 that were found on the Web and studied
(Valente and Scacchi 1999). This means that some
cases could appear in one taxonomy but not
another, while other cases might appear in more
than one, and still others might not appear in any
of these taxonomies if they were judged to not

Copyright 00 2000 John Wiley & Sons, Ltd.
188

W. Scacchi

possess the minimal information needed for charac-
terization and modeling.

4.2. Analysis Approach and Results

The first challenge in analyzing processes for
redesign points to three types of problems that
arise when processes. First, consistency problems can
appear. These denote conflicts in the specification
of several properties of a given process. For
example, a typical consistency problem is to have
a process (e.g. for Software Design) with the same
name as one of its outputs (a software design).
This is something that occurs surprisingly often in
practice, perhaps because the output is often the
most visible characteristic of a process. Second,
completeness problems cover incomplete specifi-
cations of the process. For instance, a typical
completeness problem occurs when we specify a
process with no inputs. Such a process can be
considered a ‘miracle’, since it can produce outputs
with no inputs. Similarly, a process that lacks
outputs denotes a ‘black hole’, where process
inputs disappear without generating any output.
Third, traceability problems are caused by incorrect
specification of the origin of the model itself: its
author; the agent(s) responsible for its authoring
or update, and source materials from which it was
derived. Subsequently, a process model that is
consistent, complete and traceable can be said to
be internally correct. Thus, solving these model-
checking problems is required once process models
are to be formalized.

One of the main reasons Loom is interesting as
a formal process representation language is its
capability to represent the abstract patterns of data
that are the very definition of the problems
discussed above. This capability is useful in produc-
ing simple and readable representations of model-
checking analyses. For example, it is possible to
define incomplete process model in plain English
as ‘a process with no outputs’, or as a black-
hole . This can be described in Loom as a process
that provides exactly zero resources:

(defconcept black-hole
sis (tand process
(:exactly O process-provide-resource)))

Using the process modeling representations dis-
cussed above, the user describes a process model

Softw. Process Improve. Pract., 2000; 5: 183-195

% Research Section

through Ontosaurus for processing by Loom. Then
the system diagnoses the model provided. One of
the advantages of using Loom is that once we
define an instance, Loom automatically applies its
classifier engine to find out what concepts match
and apply to that instance. This offers a big
advantage, since there is no need to specify an
algorithm for the analysis process: instead, process
models are analyzed automatically as a new model
is specified. In addition, the classifier performs
truth maintenance. Therefore, if a process model
is updated to correct a problem found by the
system, the classifier will immediately retract the
assertion that the problem applies to that process.
Thus, the classifier automates this activity for
knowledge acquisition and update.

In order to provide a more direct interface
to the diagnostic process analysis system, the
Ontosaurus browser was extended to display two
new types of pages. The first displays a description
of process in a less Loom-specific way (e.g. for
reporting purposes). The second displays a list of
all problems found in the current process model
we input. Figure 2 shows a screenshot of the Web
page constructed by the server to describe the
problems found in a model of a sample process.

The other two challenges for analyzing processes
to support SPR can be addressed with a common
capability that builds on the one just described.
Since a formal representation of a software process
model can be viewed as a semantic network or
directed attributed graph, it is possible to measure
the complexity attributes of the network/graph as
a basis for graph transformation, simplification or
optimization. This means that measures of a
richly attributed ‘process flow chart’ could reveal
attributes such as the number of process steps, the
length of sequential process segments, the degree
of parallelism in process control flow, and others
(Nissen 1997, 1998). Subsequently, redesign heuris-
tics can be coded as patterns in the structure of a
process representation. In turn, it then becomes
possible to cast a process redesign heuristic as a
pattern-directed inference rule or trigger whose
antecedent stipulates a process complexity measure
pattern, and whose consequent specifies the optim-
ization transformation to be applied to the process
representation (Nissen 1998). For example, when
analyzing a software process model, if a sequence
of process steps has linear flow and the inputs
and outputs of the steps are mutually exclusive,

Copyright 00 2000 John Wiley & Sons, Ltd.

Software Process Redesign

then the process steps can be performed in parallel.
Such a transformation reduces the time required
to execute the redesigned process sequence.

Thus, process analysis for SPR can focus on
measurement of attributes of a formal represen-
tation of a software process model that is internally
correct. This is similar to how compilers perform
code optimizations during compilation, after pars-
ing and semantic analysis while prior to code
generation (see Mak 1996).

4.3. Simulation Approach and Results

Questions pertaining to simulated process through-
put performance or user workloads before/after
process redesign can already be addressed by
process simulation tools and techniques (ProSim
1999). No significant advances are required for this.
Similarly, knowledge-based simulation capabilities
can be employed to determine process performance
improvements when multiple redesign heuristics
are used to create alternative scenarios for software
process enactment (see Caron et al. 1994, Scacchi
1999). None the less, the challenge of how to support
the transformation of as-is software processes into
to-be redesigned alternatives is not addressed by
existing process simulation approaches. Thus a
new approach is required.

One key requirement for managing the organiza-
tional transformation to a redesigned software
process is the engagement, motivation and
empowerment of process users. The goal is to
enable these users to participate and control process
redesign efforts, as well as to select the process
redesign alternatives for implementation and enact-
ment. As the direct use of available simulation
packages may present an obstacle to many process
users, another means to support process manage-
ment and change management is needed.

The approach we chose was to engage a process
user community in a multi-site organizational
setting and partner with them in redesigning their
software use processes (Scacchi and Noll 1997). In
particular, we developed, provided and demon-
strated a prototype wide-area process walkthrough
simulator that would enable the process redesign
participants with a means to model, redesign and
walkthrough processes that span multiple settings
accessed over the Internet. With this environment,
10 process redesign heuristics were found appli-
cable, while the process users chose 9 to implement

Softw. Process Improve. Pract., 2000; 5: 183-195
189

e
Py
o)
n
@
)
=
o
=
wn
o)
o
=
o
=]

W. Scacchi

Z Heiscape: Pracans Medel Diagnesly

Print Beoury Stop

The process PRODUCE-COST-HISTORY-REPORT uses no tools.
The process INFORMATION-REQUEST uses no tools.

The process PRODUCE-COST-HISTORY-REPORT is not assigned to any agent.
The process INFORMATION-REQUEST is not assigned to any agent.

The process INFORMATION-REQUEST is a mirack, i.c., it docsn't use any resources.

The process PRODUCE-COST-HISTORY-REPORT is a black hole, i.c., it produces no resources.
The process INFORMATION-REQUEST is a black hole, ie., it produces no resources.

The process REQUEST-COST-HISTORY-REPORT has no agent responsible for it.

The process FORWARD-REQUEST-TO-BUSINESS-LIAISON has no agent responsible for it.
The process OBTAIN-COST-RESEARCH-INFO has no agent responsible for it.

The process PRODUCE-INFO-ON-RATES has no agent responsible for it,

The process WRITE-PROGRAM-TO-PRODUCE-REPORT has no agent responsible for it.
The process CONSULT-ACCOUNTING-MANUAL has no agent responsibk for it.

The process CORRECT-WORK-ORDER has no agent responsible for it.

The process SET-UP-REPORT-REQUEST-FORM has no agent responsible for it.

The proccss HANDLE-REQUEST has no agent responsible for it.

The process OBTAIN-WORK-ORDER-PREPARATION-INFO has no agent responsible for it.
The process PRODUCE-COST-HISTORY-REPORT has no agent responsible for it.
The process COLLECT-RECORDS has no agent responsible for it.

The process ASK-OPERATOR-TO-LOAD-TAPES has no agent responsible for it.
The process CHECK-WORK-ORDER has no agent responsible for it.

The process REQUEST-ACCOUNTING-INFO has no agent responsible for it.

(o=

Figure 2. Generated report from Loom analysis of a process redesign case

(Scacchi and Noll 1997). In so doing, they eventually
achieved a factor of 10x in cycle time reduction,
and reductions in the number of process steps
between 2-1 and 10-1 in the software use processes
that were redesigned (Scacchi and Noll 1997). A
process simulator played a central role in the
redesign, demonstration and prototyping of these
processes. How was this realized?

4.3.1. A Process Simulator Example

Process prototyping is a computer-supported tech-
nique for enabling software process models to be
enacted without integrating the tools and artifacts
required by the modeled process (Keller and Teufel
1998, Scacchi and Mi 1997). It provides process
users the ability to interactively observe and browse
a process model, step by step, across all levels of
process decomposition modeled, using a graphic

Copyright 00 2000 John Wiley & Sons, Ltd.
190

user interface or Web browser. Creating a basic
process execution run-time environment entails
taking a prototyped process model and integrating
the tools as helper applications that manipulate
process task artifacts attached to manually or
automatically generated Web/intranet hyperlink
URLs (Noll and Scacchi 1999). Consider the follow-
ing example of a simple software development
process displayed in Figure 3 (Noll and Scacchi
1999).

This process can be modeled in terms of the
process flow (precedence relations) and decompo-
sition. It can also be attributed with user roles,
tools and artifacts for each process step. Further,
as suggested above, the directed attributed graph
that constitutes the internal representation of the
process can be viewed and browsed as a hyper-
linked structure that can be navigated with a Web

Softw. Process Improve. Pract., 2000; 5: 183-195

% Research Section

Analyze odlfy

develop
solutlon edit complle run debug
_,

analyze
impact

understan d
requirement

Figure3. A simple software development
depicted as a directed graph

process

browser. The resulting capability enables process
users to traverse or walkthrough the modeled
process, task by task, according to the modeled
process’s control flow. This in turn can realize a
Web-based or intranet-based process simulator
system (Noll and Scacchi 1999, Scacchi and Noll
1997). Figure 4 provides a view of a set of artifacts
that might be associated with the process in Figure
3. Figure 5 provides a similar view of a selected
task (‘edit’), tool (the Emacs editor), and artifact
(loaded in the Emacs edit buffer) associated with
a user role as a ‘developer’ (not shown). In addition,
the lower right frame in Figure 5 displays a record
of the history of process task events that have
transpired so far.

Using this process prototyping technology, we
could work with process users to iteratively and
incrementally model their as-is or to-be processes.
Subsequently, modeled processes could then be

Software Process Redesign

interactively traversed using a Web browser inter-
face to the resulting process simulator. Process
users, independent of the time or location of their
access to the process model, could then provide
feedback, refinement or evaluation of what they
saw in the Web-based process simulator.

Simulators are successful in helping process
users to learn about the operational sequences of
problem-solving tasks that constitute a software
process (see Kettinger and Grover 1995, Scacchi
and Mi 1997). Flight simulators have already
demonstrated this same result many times over
with flight operations process users (aircraft pilots).
Process walkthrough simulators can identify poten-
tial patterns of software process user behavior,
as well as potential performance or workflow
bottlenecks in their use. This information in turn
can help to identify parameter values for a discrete-
event simulation of the same process. However,
this has not yet been attempted.

Overall, discrete-event and knowledge-based
simulation systems, together with process
walkthrough simulators, constitute a learning,
knowledge sharing, measurement and experimen-
tation environment that can support and empower
process users when redesigning their software
processes (see Bashein et al. 1994, Kettinger and
Grover 1995). Therefore, these process simulation

Product Directory

Requirements

Process

| Enactment rationale,
Task Window

Choose a task from the *Avallable Tasks® list. information about the:

Figure 4. A set of artifacts associated with the software process in Figure 3

Copyright 00 2000 John Wiley & Sons, Ltd.

Softw. Process Improve. Pract., 2000; 5: 183-195
191

2 . Research Section

W. Scacchi

main.c File Edit Buffers Display Help
s Author: John Moll, USC
available Created: Thu Feb 2 14:12:57 1995
tasks Modified: Thu Feb 2 14:55:17 1995 sfdif@gilligan.usc.edu
Language: C
Status: Experimental (Do Hot Distribute)
- gﬂﬂ. I llluul-.-l--l--l--lII-n--n-n'--.--'In'hﬁlﬂ*ﬂl4llIllllllllllll
o comple B#include <stdio.h>
® gebug #include <string.h>
® check-in main(arge, argv)
int arge:
Back to '
char ==a E
Adiacts ; i B
| #1/bin/cah -f
DONE | set id=/code/main.c
deo dht:/code/main.c ftmp/tmp.c
| emacs /tmp/tmp.c
T S — T Y T T =Y S

Figure 5. A software process enactment step presented in a process simulator

capabilities, together with other organizational
change management techniques, should help min-
imize the risk of failure when redesigning software
processes used in complex organizational settings.

5. DISCUSSION

Given the introduction to the subject of SPR, an
explanation of what it is, an explanation of how
software process modeling, analysis and simulation
fit it, and a demonstration of how it can operate
through examples, there is still more work to be
done. Thus, the purpose of this discussion is to
identify some of the future needs that have become
apparent from this investigation.

First, whether dealing with a legacy software
process in a real-world setting, or when browsing
a process description found on the Web, capturing,
formalizing or otherwise modeling as-is processes
is cumbersome. Part of the problem at hand is
that most organizations lack explicit, well-defined
or well-managed processes as the starting point
for an SPR effort. Consequently, attention is often
directed to focus only on creation of to-be alterna-
tives, without establishing an as-is baseline. With-
out a baseline, SPR efforts will increase their
likelihood of failure (see Bashein et al. 1994, Ket-

Copyright 00 2000 John Wiley & Sons, Ltd.
192

tinger and Grover 1995). Thus, there is need for
new tools and techniques for the rapid capture
and codification of as-is software processes to
facilitate SPR.

Second, there is need for rapid generation of to-
be and here-to-there processes and models. SPR
heuristics, as well as the tools and techniques for
acquiring and applying them, appear to have
significant face value. They can help to more
rapidly produce to-be process alternatives. How-
ever, knowledge for how to construct or enact the
here-to-there transformation process in a way that
incorporates change management techniques and
process management tools is an open problem.
Further study is needed here.

Third, SPR heuristics or transformation taxo-
nomies may serve as a foundation for developing
a theoretical framework for how to best represent
SPR knowledge. Similarly, such a framework
should stipulate what kinds of software process
concepts, links and instances should be represented,
modeled and analyzed to facilitate SPR. None the
less, there is also a practical need to design and
tailor SPR taxonomies to specific software process
domains and organizational settings. At this point,
it is unclear whether heuristics for redesigning
software use processes are equally applicable to
software acquisition, development or evolution

Softw. Process Improve. Pract., 2000; 5: 183-195

% Research Section

processes. The same can be said for any other
combination of these types of software processes.

Fourth, in the preceding section, software tools
that support the modeling, analysis and simulation
of software processes for redesign were introduced.
However, these tools were not developed from the
start as a single integrated environment. Thus their
capabilities can be demonstrated to help elucidate
what is possible, but what is possible may not be
practical for widespread deployment or production
usage. Thus, there is a need for new environments
that support the modeling, analysis and simulation
of software processes that can be redesigned,
lifecycle engineered and continuously improved
from knowledge automatically captured from the
Web (see Brownlie et al. 1997, Maurer and Holz
1999, Scacchi and Mi 1997, Valente and Scacchi
1999).

Last, as highlighted in the results from research
studies in business process redesign (Bashein et al.
1994, Caron et al. 1994, Kettinger and Grover 1995),
and from first-hand experience (Scacchi and Noll
1997, Scacchi 1999), process users need to be
involved in redesigning their own processes.
Accordingly, the temptation to seek fully automated
approaches to generating alternative to-be process
designs from the analysis of an as-is process
model must be mitigated. The concern here is to
understand when or if fully automated SPR is
desirable, and in what kinds of organizational
settings. For example, there can be SPR situations
where automated redesign may not be a suitable
goal or outcome. This is in organizational settings
where process users seek empowerment and
involvement in redesigning and controlling their
process structures and workflow. In settings such
as these, the ability to access, search/query, select
and evaluate possible process redesign alternatives
through the system capabilities described above
may be more desirable (see Scacchi and Noll 1997).
Thus the ultimate purpose of support environment
for SPR may be in supporting and empowering process
users to direct the redesign of their processes,
rather than in automating SPR.

Beyond this, one of the goals of SPR should be
to minimize the risk of a failed SPR effort. Solutions
that focus exclusively on technology-driven or
technology-only approaches to SPR seem doomed
to fail. Thus, there remains a challenge for those
that exclusively choose the technology path to SPR
to effectively demonstrate how such an approach

Copyright 00 2000 John Wiley & Sons, Ltd.

Software Process Redesign

can succeed, in what kinds of organizational
settings, and with what kinds of skilled process
participants.

6. CONCLUSIONS

This paper addresses three research questions
that identify and describe what software process
redesign is, how software process modeling and
simulation fit in, and what an approach to SPR
might look like. SPR is proposed as a technique
for achieving radical, order-of-magnitude improve-
ments or reductions in software process attributes.
SPR builds on empirical and theoretical results
in the area of business process re-engineering.
However, it also builds on knowledge that can be
gathered from the Web. Though the quality of
such knowledge is more variable, the sources from
which it is derived — experience reports, case
studies, lessons learned, best practices and similar
narratives — can be formally represented, hyper-
linked and browsed during subsequent use or
reuse. A central result from the knowledge collected
so far is that SPR must combine its focus to both
techniques for changing the organization where
software processes are to be redesigned, as well
as for identifying how software engineering and
information technology-based process management
tools and concepts can be applied.

Software process modeling, analysis and simul-
ation technology can be successfully employed to
support SPR. In particular, knowledge-based tools,
techniques and concepts appear to offer a promising
avenue for exploration and application in this
regard. However, new process modeling, analysis
and simulation challenges have been also identified.
These give rise to the need to investigate new
tools and techniques for capturing, representing
and utilizing new forms of process knowledge.
Knowledge such as SPR heuristics can play a
central role in rapidly identifying process redesign
alternatives. Software process simulation tech-
niques in particular may require computer-
supported person-driven process simulators, which
enable process users to observe walkthrough or
flythrough process redesign alternatives. Finally,
software process modeling, analysis and simulation
capabilities that support SPR activities may need
to be deployed in ways that engage and facilitate
the needs of users who share processes across

Softw. Process Improve. Pract., 2000; 5: 183-195
193

% Research Section

multiple organizational settings, using mechanisms
that can be deployed on the Web.

Last, an approach to SPR that utilizes Web-
based tools for software process modeling, analysis,
and person-driven simulation has been presented.
Initial experiences in using these tools, together
with the business process re-engineering and
change management techniques they embody, indi-
cates that the objective of order-of-magnitude
reductions in software process cycle time and
process steps can be demonstrated and achieved
in complex organizational settings. Whether results
such as these can be replicated in all classes of
software processes — acquisition, development,
usage and evolution — remains the subject of
further investigation. Similarly, other research prob-
lems have been identified for how or where
advances in software process modeling and simul-
ation can lead to further experimental studies and
theoretical developments in the art and practice of
software process redesign.

ACKNOWLEDGEMENTS

The research described in this paper resulted from
collaborations with the following people at the
USC ATRIUM Laboratory. Dr Andre Valente, now
at Fastv.com, developed the modeling and analysis
system prototype with Loom and Ontosaurus
displayed in Figures 1 and 2. Professor John
Noll, now at the Computer Science Department,
University of Colorado at Denver, developed the
modeling and process simulation walkthrough
shown in Figures 4 and 5. The process measurement
technique and rule-based formulation used for
automated process redesign analysis was first
developed by Professor Mark Nissen, now at the
Systems Management Department, Naval Post-
graduate School, Monterey, CA. Finally, this
research was supported by grants from the Office
of Naval Research (N00014-94-1-0889) and the
Defense Acquisition University (N487650-27803).
All of these contributions are gratefully acknowl-
edged.

REFERENCES

Bashein BJ, Markus ML, Riley P. 1994. Preconditions for
BPR success: and how to prevent failures. Information
Systems Management 11(2): 7-13.

Copyright 00 2000 John Wiley & Sons, Ltd.
194

W. Scacchi

Brownlie RA, Brown PE, Culver-Lozo K, Striegel JJ.
1997. Tools for software process engineering. Bell Labs
Technical Journal 2(1): 130-143.

Caron JR, Jarvenpaa SL, Stoddard DB. 1994. Business
Reengineering at CIGNA Corporation: experiences and
lessons learned from the first five years. MIS Quarterly
18(3): 233-250.

Keller G, Teufel T. 1998. SAP R/3 Process-Oriented
Implementation. Addison-Wesley Longman Limited:
Essex, England.

Kettinger W], Grover V. 1995. Special section: toward a
theory of businesss process change management. Journal
of Management Information Systems 12(1): 9-30.

Ku S, Suh Y-H, Tecuci G. 1996. Building an intelligent
business process reengineering system: a case-based
approach. Intelligent Systems in Accounting, Finance and
Management 5(1): 25-39.

MacGregor R, Bates R. 1995. Inside the LOOM description
classifier. SIGART Bulletin 2(3): 88-92.

Mak R. 1996. Writing Compilers and Interpreters. Wiley:
New York.

Maurer F, Holz H. 1999. Process-oriented knowledge
management for learning software organizations. Twelfth
Workshop on Knowledge Acquisition, Modeling and
Management, Banff, Canada, http://sern/ucalgary.ca/
KSI/KAW /KAW99/papers.html

Mi P, Scacchi W. 1990. A knowledge-based environment
for modeling and simulating software engineering pro-
cesses. IEEE Transactions on Knowledge and Data Engineer-
ing 2(3): 283-294.

Mi P, Scacchi W. 1997. A meta-model for formulating
knowledge-based models of software development.
Decision Support Systems 17(3): 313-330.

Nissen ME. 1997. Reengineering the RFP processs
through knowledge-based systems. Acquisition Review
Quarterly 4(1): 87-100.

Nissen ME. 1998. Redesigning reengineering through
measurement-driven inference. MIS Quarterly 22(4):
509-534.

Noll], Scacchi W. 1999. Supporting software development
projects in virtual enterprises. Journal of Digital Infor-
mation 1(4).

Ontosaurus Web Browser. 1999. http://www.isi.edu/
isd /ontosaurus.html.

ProSim. 1999. Selected Papers from the ProSim’99 Work-
shop, Special Issue on Software Process Simulation
Modeling. Journal of Systems and Software 46(2/3).

Softw. Process Improve. Pract., 2000; 5: 183-195

% Research Section

Scacchi W. 1999. Experiences with software process
simulation and modeling. Journal of Systems and Software
46(2): 183-192.

Scacchi W, Boehm BE. 1998. Virtual system acquisition:
approach and transitions. Acquisition Review Quarterly
5(2): 185-216.

Scacchi W, Mi P. 1997. Process life cycle engineering: a
knowledge-based approach and environment. Intelligent
Systems in Accounting, Finance and Management 6: 83-107.
Scacchi W, Noll J. 1997. Proccess-driven intranets: life
cycle support for process reengineering. IEEE Internet
Computing 1(5): 42—49.

Shelton R. 1999. The Long Game: Revolutionary Change

Copyright 00 2000 John Wiley & Sons, Ltd.

Software Process Redesign

through Radical Innovation. Prism, Third Quarter, Arthur

D. Little: Cambridge, MA; 27-39. http://www.
arthurdlittle.com/prism/prism.html.
Software Program Managers Networks. 1999.

http:/ /www.spmn.com.

Valente A, Russ T, MacGregor R, Swartout W. 1999.
Building and (re)using an ontology for air campaign
planning. IEEE Intelligent Systems 14(1): 27-36.

Valente A, Scacchi W. 1999. Developing a knowledge
web for business process redesign. [JCAI-99 Workshop
on Workflow and Process Management, Stockholm,
Sweden, August 1999.

Zelkowitz M, Wallace DR. 1998. Experimental models
for validating technology. Computer 31(5): 23-31.

Softw. Process Improve. Pract., 2000; 5: 183-195
195

