13,859 research outputs found

    Evaluating the End-User Experience of Private Browsing Mode

    Get PDF
    Nowadays, all major web browsers have a private browsing mode. However, the mode's benefits and limitations are not particularly understood. Through the use of survey studies, prior work has found that most users are either unaware of private browsing or do not use it. Further, those who do use private browsing generally have misconceptions about what protection it provides. However, prior work has not investigated \emph{why} users misunderstand the benefits and limitations of private browsing. In this work, we do so by designing and conducting a three-part study: (1) an analytical approach combining cognitive walkthrough and heuristic evaluation to inspect the user interface of private mode in different browsers; (2) a qualitative, interview-based study to explore users' mental models of private browsing and its security goals; (3) a participatory design study to investigate why existing browser disclosures, the in-browser explanations of private browsing mode, do not communicate the security goals of private browsing to users. Participants critiqued the browser disclosures of three web browsers: Brave, Firefox, and Google Chrome, and then designed new ones. We find that the user interface of private mode in different web browsers violates several well-established design guidelines and heuristics. Further, most participants had incorrect mental models of private browsing, influencing their understanding and usage of private mode. Additionally, we find that existing browser disclosures are not only vague, but also misleading. None of the three studied browser disclosures communicates or explains the primary security goal of private browsing. Drawing from the results of our user study, we extract a set of design recommendations that we encourage browser designers to validate, in order to design more effective and informative browser disclosures related to private mode

    On the Feasibility of Fine-Grained TLS Security Configurations in Web Browsers Based on the Requested Domain Name

    Get PDF
    Most modern web browsers today sacrifice optimal TLS security for backward compatibility. They apply coarse-grained TLS configurations that support (by default) legacy versions of the protocol that have known design weaknesses, and weak ciphersuites that provide fewer security guarantees (e.g. non Forward Secrecy), and silently fall back to them if the server selects to. This introduces various risks including downgrade attacks such as the POODLE attack [15] that exploits the browsers silent fallback mechanism to downgrade the protocol version in order to exploit the legacy version flaws. To achieve a better balance between security and backward compatibility, we propose a mechanism for fine-grained TLS configurations in web browsers based on the sensitivity of the domain name in the HTTPS request using a whitelisting technique. That is, the browser enforces optimal TLS configurations for connections going to sensitive domains while enforcing default configurations for the rest of the connections. We demonstrate the feasibility of our proposal by implementing a proof-of-concept as a Firefox browser extension. We envision this mechanism as a built-in security feature in web browsers, e.g. a button similar to the \quotes{Bookmark} button in Firefox browsers and as a standardised HTTP header, to augment browsers security

    IGUANA Architecture, Framework and Toolkit for Interactive Graphics

    Full text link
    IGUANA is a generic interactive visualisation framework based on a C++ component model. It provides powerful user interface and visualisation primitives in a way that is not tied to any particular physics experiment or detector design. The article describes interactive visualisation tools built using IGUANA for the CMS and D0 experiments, as well as generic GEANT4 and GEANT3 applications. It covers features of the graphical user interfaces, 3D and 2D graphics, high-quality vector graphics output for print media, various textual, tabular and hierarchical data views, and integration with the application through control panels, a command line and different multi-threading models.Comment: Presented at the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages LaTeX, 4 eps figures. PSN MOLT008 More and higher res figs at http://iguana.web.cern.ch/iguana/snapshot/main/gallery.htm
    • …
    corecore