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Abstract. Most modern web browsers today sacrifice optimal TLS se-
curity for backward compatibility. They apply coarse-grained TLS con-
figurations that support (by default) legacy versions of the protocol that
have known design weaknesses, and weak ciphersuites that provide fewer
security guarantees (e.g. non Forward Secrecy), and silently fall back
to them if the server selects to. This introduces various risks including
downgrade attacks such as the POODLE attack [15] that exploits the
browsers silent fallback mechanism to downgrade the protocol version
in order to exploit the legacy version flaws. To achieve a better balance
between security and backward compatibility, we propose a mechanism
for fine-grained TLS configurations in web browsers based on the sen-
sitivity of the domain name in the HTTPS request using a whitelisting
technique. That is, the browser enforces optimal TLS configurations for
connections going to sensitive domains while enforcing default configu-
rations for the rest of the connections. We demonstrate the feasibility of
our proposal by implementing a proof-of-concept as a Firefox browser
extension. We envision this mechanism as a built-in security feature in
web browsers, e.g. a button similar to the “Bookmark” button in Fire-
fox browsers and as a standardised HTTP header, to augment browsers
security.

1 Introduction

The Transport Layer Security (TLS) protocol [§] [20] is one of the most important
and widely used protocols to date. It is used to secure internet communications
for billions of people everyday. TLS provides a secure communication channel
between two communicating parties. At the beginning of each new TLS session,
the client and server must agree on a single common TLS version and ciphersuite
to be used in that session. These are extremely important parameters as they
define the security guarantees that the protocol can provide in a particular ses-
sion. TLS supports various protocol versions and ciphersuites. Each ciphersuite
is a string that defines the cryptographic algorithms that will be used in a par-
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ticular session. Generally, these algorithms includdl: the Key-Exchange, Digital
Signature, Symmetric Encryption, Authenticated Encryption (AE), and Hash.
Clientd] and servers tend to support legacy versions, e.g. TLS 1.1 and TLS 1.0,
and weak, less secure, or unrecommended ciphersuites, e.g. non-Forward Secrecy
(non-FS), non-Authenticated Encryption (non-AE) B, or weak Hash algorithms,
mainly to provide backward compatibility with legacy servers. For example, a
recent analysis of IPv4 internet scan dataset shows that embedded web servers in
networked devices tend to use legacy TLS versions compared to top domain web
servers [21]. To accommodate such servers, web browsers tend to support legacy
versions and weak ciphersuites to be able to connect to such legacy servers. The
same goes for updated servers. They support legacy versions and weak cipher-
suites so as not to lose connections from legacy clients.

1.1 Motivation

In the near future, the coming version of TLS, TLS 1.3, which is currently work in
progress [20], will become a standard. Ideally, mainstream browsers] will deploy
it and offer it as the default version. TLS 1.3 provides significant improvements in
security and performance over its predecessors. However, experience has shown
that ordinary web servers may take years till they get upgraded to support
the latest TLS version. This is especially true in embedded web servers as we
mentioned earlier. For this reason, web browsers tend to maintain support for
legacy TLS versions and weak ciphersuites and silently (without warning or
indicator) fall back to them if the server they are trying to connect to does not
support the latest version or the strongest ciphersuite. This is the case in all
mainstream web browsers today. It is not inconceivable that this will remain
the case after the deployment of the coming version, TLS 1.3, despite numerous
known weaknesses including design flaws in the current version, TLS 1.2. For
example, legacy versions up to TLS 1.2 do not authenticate the server's selected
version and ciphersuite at early stage of the handshake. This flaw allows various
attacks that result in breaking the protocol's main security guarantees as shown
in [3] [6], for example.

There are several TLS attacks that exploit the support for legacy versions
or weak ciphersuites by one or both of the communicating parties during the
TLS handshake. This family of attacks is known as downgrade attack, where
an active network attacker forces the communicating parties to operate in a

' TLS 1.2 and TLS 1.3 ciphersuite strings have different format and define different
set of algorithms. See [§] and [20] for more details.

2 In our paper, TLS clients are represented by web browsers. We will use the terms
client, web browser, or browser interchangeably.

3 In our context, non-AE refers to ciphersuites that do not provide confidentiality,
integrity, and authenticity simultaneously. For example the CBC MAC-then-encrypt
ciphersuites which are susceptible to padding oracle attacks [25] [28].

4 Throughout the paper, mainstream browsers refer to the following tested versions:
Chrome version 63.0.3239.108, Firefox 57.0.2, Internet Explorer 11.125.16299.0, Edge
41.16299.15.0, and Opera 49.0.2725.64.



mode that is weaker than they would prefer and support, in order for him to
perform attacks that would not have been possible in the strong mode. For
example, [3] [5] [6] [7] [15], among others.

The tension between security and backward compatibility in cryptographic
protocols is historical. Backward compatibility seems inevitable in internet pro-
tocols such as TLS due to the global and heterogeneous nature of the connected
devices over the internet, in addition to the heavy reliance on the internet ser-
vices in people's daily lives. From the client's perspective (which is our focus
in this paper), if a browser is configured with optimal TLS configurations, i.e.
it only negotiates the latest version of TLS, e.g. TLS 1.3, and a handful of the
strongest ciphersuites that satisfy both FS and AE properties, this can be the
strongest client but can render many ordinary websites on legacy servers un-
reachable due to compatibility issues. Obviously, this will lead to a difficult user
experience. On the other hand, if the client supports legacy versions, e.g. TLS 1.0
and weak or non preferred ciphersuites, e.g. non-FS or non-AE as is the case in
all mainstream web browsers today, the browser silently falls back to one of the
legacy versions or weak ciphersuites to connect to those legacy servers that do
not support the latest version or the strongest ciphersuites.

To maintain a balance between the two extremes, the browser needs to dis-
tinguish between various contexts and apply fine-grained TLS configurations.
That is, the browser enforces optimal configurations for connections going to
sensitive domains, and default ones for the rest of the connections.

To this end, we try to answer the following question: How can we guide
the browser into making an informed decision on whether to enforce optimal or
default TLS configurations?

1.2 Contribution

Our contribution is twofold: First, we propose a light-weight mechanism for
fine-grained TLS security configurations in web browsers. Our mechanism al-
lows browsers to enforce optimal TLS security configurations for connections
going to sensitive domains while maintaining default configurations for the rest
of the connections. It represents a middle-ground between optimal TLS con-
figurations that might render many ordinary websites unreachable and default
configurations that might be abused by attackers to perform downgrade attacks.
Our mechanism can detect and prevent a class of dangerous downgrade attacks
and server misconfigurations. Furthermore, it does not require a new Public Key
Infrastructure (PKI) nor third parties such as Certificate Authorities (CAs).
Second, we examine the feasibility of our mechanism by implementing a proof-
of-concept as a Firefox browser extension. In addition, we present the extension
architecture.

1.3 Organisation

The rest of the paper is organised as follows: In section 2l we provide a brief back-
ground. In section [B] we summarise some related work. In section [4] we describe



our system and threat models, and goals. In section [l we present our proposed
mechanism. In section [6] we briefly describe some other server-based TLS config-
urations advertisement methods. In section [1 we list some limitations. Finally,
in section [§ we conclude.

2 Background

2.1 TLS Version and Ciphersuite Negotiation

We now briefly describe the version and ciphersuite negotiation in both TLS 1.2
[8] and TLS 1.3 (draft-24) [20]. We base our description on the current version,
TLS 1.2, and if there is any difference in TLS 1.3 we mention it explicitly. As
depicted in Figure[ll at the beginning of a new TLS handshake the client (Initia-
tor I) must send a ClientHello (CH) message to initiate a connection with the
server (Responder R). The ClientHello contains several parameters including:
First, the client's TLS supported versions which is sent as a single value that rep-
resents the maximum supported version (vmaz;) while in TLS 1.3, it is sent as
a list of supported versions ([vy, ..., v,]) in the “supported_versions” extension.
The vmax; is still included in TLS 1.3 ClientHello for backward compati-
bility and its value is set to TLS 1.2. Second, a list of supported ciphersuites
([a1, ..., an]). Third, a list of the client's supported extensions ([ey,...,e5]) is sent
at the end of the message. In TLS 1.3 the extensions must at least include the
“supported_versions” [vq, ..., v,], while in TLS 1.2, the extensions are optional.

Upon receiving a ClientHello, the server decides which version and cipher-
suite will be used in the session and responds with a ServerHello (SH). The
ServerHello contains several parameters including: First, the server's selected
TLS version (vg) based on the client's supported versions. Second, the selected
ciphersuite (ag) based on the client's proposed list. If the server does not sup-
port any of the client's proposed versions or ciphersuites, it responds with a
handshake failure alert. However, if the server selected a version lower than the
client's maximum version, all mainstream web browsers today fall back silently
to a lower version (up to TLS 1.0).

2.2 TLS Downgrade Attack

In recent years, several downgrade attacks have been shown practical. For ex-
ample, the version downgrade in the Padding Oracle On Downgraded Legacy
Encryption (POODLE) attack [I5], the “Version rollback by ClientHello frag-
mentation” [7], and the ciphersuite downgrade (from RSA to non-RSA) in a
variant of the DROWN attack [5].

The aforementioned attacks share a pattern: First, the client supports either
a legacy version (SSL 3.0 or TLS 1.0) or non preferred or weak ciphersuite (RSA)
and silently falls back to them. Second, the attacks circumvent the handshake
transcript authentication mechanism (in the Finished MACs) that is placed
to detect any modifications in the protocol messages (including the version or
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SH(vr,ar,...)

The rest of the handshake

Fig. 1. Simplified message sequence diagram illustrating the version and ciphersuite
negotiation in the TLS Hello messages. Parameters followed by “~” are deprecated in
TLS 1.3 while those followed by “+” are newly introduced in TLS 1.3. The unmarked
parameters are mutual to both versions.

Client (I) MITM (M) Server (R)
CH(TLS 1.2,...) CH!(5 bytes)
CH!(remainder)
SH(TLS 1.0,...) SH(TLS 1.0,...)
- - ~[Select TLS 1.0
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Fig. 2. Illustration of a version downgrade attack attempt based on the “Version roll-
back by ClientHello fragmentation” attack scenario [7] when the client does not support
legacy TLS versions.

ciphersuite). Clearly, these attacks could have been prevented if the client does
not support legacy versions or weak ciphersuites. In these cases, the client will
refuse to proceed the handshake with a version or ciphersuite that it does not
support, as illustrated in Figure2l One might argue that this is what all browsers
should do: disable all legacy versions and unrecommended ciphersuites that pro-
vide fewer security guarantees (e.g. non-FS) and never accept them from any
server. Experience shows that disabling legacy versions and exclusively offering
the strongest ciphersuites is a complex decision for browser vendors. Browser
vendors scarifies optimal TLS security configurations to some degree to provide
backward compatibility for their users who might need to connect to legacy
servers as we mentioned earlier. However, in this paper, we do not argue for or
against. Rather, we explore the solutions space to augment browsers security
while maintaining usability and backward compatibility. Our mechanism aug-
ments browsers security for connections to sensitive domains that are capable of
providing optimal TLS configurations (but also support legacy configurations for
legacy clients) by providing the browser with prior knowledge about these sen-
sitive domains. This is an improvement over the “one-size-fits-all” TLS security
policy in all mainstream web browsers which renders some downgrade attacks
undetected.



3 Related Work

3.1 Browsers Security Enhancement Mechanisms

In [12] Jackson and Barth introduce “ForceHTTPS”, a mechanism for enforcing
strict HT'TPS policy. Websites opt-in to this policy either from the server side
by advertising a special HT'TP response header, or from the client side by the
user. The strict policy converts any plain HTTP URL to HTTPS and performs
stricter TLS certificate validation than the default one. The mechanism blocks
any opted-in website that violates the policy. Our work is similar in spirit to [12],
and can be viewed as an extension to [12], at a finer level. Our mechanism is
for enforcing optimal TLS configurations (TLS version and ciphersuites) using a
different technique (whitelisting). Unlike a decade ago, nowadays enforcing TLS
is not sufficient. We aim for methods to enforce optimal TLS. Experience has
shown the practicality of TLS version and ciphersuite downgrade attacks that
circumvent design-level downgrade protection mechanisms (e.g. by exploiting
implementation bugs). These attacks abuse the support of legacy versions or
ciphersuites by one or both parties, which result in breaking TLS main security
guarantees as in [5] [7] [15].

In [27] Szalachowski et al. propose PoliCert which introduces the idea of pol-
icy certificate which includes optional parameters to specify the minimum TLS
security level that the client should enforce and the error handling mechanism.
Our idea of enforcing fine-grained TLS configurations complements and provides
a new perspective for a relevant concept. However, there are subtle differences
between the two work. For example, unlike [27], our proposal does not require
a new PKI nor CAs. It is a light-weight mechanism that can be adopted by
browser vendors as an additional layer of security.

Overall, we are not aware of an existing light-weight mechanism or browser
extension that proposes or implements our concept in this paper.

3.2 Warning Messages in Web Browsers

Previous work shows that users tend to ignore passive security indicators such
as the padlock and the Extended Validation (EV indicators [13] [23).

On the other hand, it has become clear that active warnings that interrupt
the user's task and ask for the user's action are more effective than passive
indicators [4] [10] [23] [29]. However, users adherence to a warning vary with
context such as site reputation [I9]. The study suggests considering contextual
factors to improve warning messages [I9]. Our mechanism and previous work
such as ForceHTTPS [12] and PoliCert [27] suggest giving server administrators
and domain owners means to advertise strict TLS security policies and error
handling which can help protect users from making bad security decisions.

5 Extended Validation is a passive browser indicator that appears in the address bar
only for websites which have strongly verified identity.



Warning messages should be avoided in benign situations to avoid the “ha-
bituation” effect that results from seeing the warning too often such that users
underestimate the risk behind it [26].

These studies give useful insights that will be considered in the usability
aspect of our mechanism.

4 Our System and Threat Models, and Goals

Our system model consists of TLS client and server trying to establish a TLS
connection. TLS proxiesﬁ (middleboxes) are out of our system's model scope.
Both parties support multiple TLS versions and ciphersuites with various secu-
rity levels. The TLS client is represented by mainstream web browsers. It sup-
ports and prefers the latest TLS version and the strongest ciphersuite. However,
for backward compatibility, it also supports legacy versions and weak cipher-
suites, and silently falls back to them if the server selected a legacy version or
weak ciphersuite. The client implements the “downgrade dance” mechanism that
makes the browser fall back to a lower version and retry the handshake if the
initial handshake failed for any reason as is the case in the POODLE attack [15].
Ideally, updated web browsers today do not support completely broken crypto-
graphic algorithms (ciphersuites). However, they do support ciphersuites that
provide fewer security guarantees such as those with non-FS key-exchange or
non-AE. The assumption that the browser supports weak, unrecommended, or
plausibly broken ciphersuites is realistic and can happen in the future. Classi-
cal cryptographic algorithms do not last forever. Algorithm design flaws can be
found, and advances in computation powers enable solving hard problems such
as prime factorisation. For example, several algorithms were supported through
years of speculations about their insecurity until they got officially deprecated
such as the RC4 algorithm [I§].

In terms of threat model, our model assumes that the client and server are
honest peers. The adversary has full control over the communication channel
and can drop, modify, inject, or redirect messages in the channel.

In terms of system goals, our proposal tries to mitigate the risks that can re-
sult from the browsers silent fallback to a legacy TLS version or weak ciphersuite
which puts the client at the risk of:

1. Falling victim to downgrade attacks by a man-in-the-middle that exploits
the client support for legacy versions or ciphersuites. For example, the case
of version downgrade in the POODLE attack [15] which allows the attacker
to exploit flaws in the legacy version to decrypt secret data.

2. Connect to misconfigured servers for important services such as ebanking
and egovernment websites, or important services that are not necessarily

6 A proxy (also known as middlebox) is an entity that can be placed between a client
and server for various purposes such as interception or packet inspection. It splits
the TLS connection between the client and server so that the client and server are
in fact connecting to the proxy and not directly to each other.
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Fig. 3. Illustration for our proposed fine-grained TLS configurations mechanism ap-
plied on the TLS versions (omitting the ciphersuites for simplicity).

maintained by large service providers or experts who are up-to-date with
advances in security. For example, an organisation's web mail server.

5 Owur Proposal

5.1 Overview

Our proposal tries to tackle the challenge of providing a high level of security
for connections to sensitive websites while maintaining backward compatibility
with ordinary websites in TLS implementations in web browsers. To this end, we
propose a mechanism for fine-grained TLS configurations. That is, optimal TLS
configurations are enforced for connections to sensitive domains, while default
configurations are enforced for the rest of the connections. To do this, the browser
needs guidance to distinguish between different contexts. We achieve this by
providing the browser with prior knowledge through a pre-defined list of sensitive
domain names, e.g. ebanking, egovernment, ebusiness portals, etc. that guides
the browser into whether to enforce the optimal TLS configurations or the default
ones. See Figure [3] for an overview of our proposed mechanism.

To realise the idea, we implemented a proof-of-concept as a Firefox browser
extension. For the extension's implementation, we built a hybrid Firefox exten-
sion using WebExtensions API [I7] and Add-on SDK [I6]. We run the exten-
sion in Firefox Developer edition version 56.0b3 (32-bit). The overall concept
seems straight-forward but implementing it required non-trivial effort to over-
come WebExtensions API limitations to perform low-level functions such as the
configurations re-writing and error messages customisation.

5.2 Subscribing to the Mechanism

Websites (domains) can subscribe to our mechanism by two methods. The first
method is a client-side method which targets two groups of users: First, security-



conscious users who want to protect their sensitive connections, e.g. connections
to email and ebanking websites, from the threats described in the system goals in
section [l Second, Information Technology (IT) administrators in organisations
such as banks, universities, etc. who can whitelist some sensitive domains in their
employees PCs and laptops so that any connection from their devices to these
domains is initiated using optimal TLS configurations. Similar to any client-
side security feature, the mechanism requires some level of awareness about its
benefits to incentivize users to use it.

The second subscription method is a server-side method through an HTTP
response header. The server administrator needs to configure the server to send
the mechanism's specific header. Upon receiving, our extension adds the domain
name that has sent the header to the whitelist. This method does not require user
intervention but assumes an authentic first connection that contains the HT'TP
header, also known as Trust On First Use (TOFU). This is a well understood
prerequisite for all header-based policies such as HSTS [I1], Content Security
Policy (CSP) [24] and Public-Key Pinning (PKP) [1]. Therefore, the user must
make the first connection to these website that advertise the mechanism's header
using a trusted network. In addition, unlike the client-side method where the
policy can be enforced before the first HI'TPS request is sent, in the server-side
subscription method, the policy can only be enforced after a first request is sent
(to get the server response header first).

5.3 Architecture

Our Firefox extension's components can be described as follows:

Pre-Defined TLS Configuration Policies. The policies govern the TLS con-
figurations that will be enforced before an HTTPS request is sent. The TLS
configurations space for our policies is the set of versions and ciphersuites that
exist in Firefox Developer edition version 56.0b3. That is, in terms of versions:
TLS 1.3, TLS 1.2, TLS 1.1, and TLS 1.0, and in terms of ciphersuites: 15 ci-
phersuites that provide different levels of security guarantees which include FS,
non-FS, AE, and non-AE ciphersuites. There is a consensus among the security
community that FS and AE ciphersuites provide stronger security guarantees
than non-FS or non-AE. Therefore, for our set of ciphersuites in Firefox we can
define strong cipehrsuites as those that provides both FS and AE, while weak ci-
phersuites as those that do not support F'S or AE or both, as they provide fewer
security guarantees. Similarly, if there are known or plausibly broken primitives
in any cipehrsuite (this can happen in the future), it can not be added to the
set of strong ciphersuites.

For our proof-of-concept, we define two TLS configuration policies and hard
code them in the extension: strict which represents the optimal TLS configu-
rations, and default which represents the default configurations. The strict



Table 1. Our extension's built-in policies.

Policy Level TLS Version Ciphersuites
Strict TLS 1.3 Both FS and AE
Default TLS 1.3; TLS 1.2; TLS 1.1; TLS 1.0 FS; AE; non-FS; non-AE

policy is the strictest class which supports only TLS 1.3E|, and only the TLS 1.3
ciphersuites that provide both AE and FS. Second, the default policy (default
configurations) is equivalent to the Firefox Developer edition version 56.0b3 de-
fault configurations which support TLS 1.3, TLS 1.2, TLS 1.1 and TLS 1.0, and
15 different ciphersuites including FS, non-FS, AE, and non-AE ciphersuites.
See Table [l for our proof-of-concept TLS policy levels.

The number of policy levels is a design decision. We could have defined more
levels if desired. For example, we could have defined a level for each version of
TLS. The more levels, the more granularity is achieved. However, more granu-
larity means more warning messages since the essence of our mechanism is to
either warn the user before falling back to a lower policy or block the user from
proceeding to the website (depending on the error handling mechanism that is
assigned to that domain as we will elaborate later), unlike the browser's default
behaviour that silently falls back to a lower version or weaker ciphersuite without
warning which can render some downgrade attacks or misconfigured important
servers undetected. We try to maintain a balance between security and usability
and decided to define two levels policy where there is a significant shift in the
provided security guarantees, and present only one warning message to the user
in case of policy violation.

Pre-Defined Domain Names List. The domain names list combined with the
TLS policy that is assigned to each domain name is used to provide the browser
with the prior knowledge that guides it into which TLS policy should be enforced
for each examined HTTPS request. In our proof-of-concept, the domain names
list takes the domain names from two sources: either manually as an input from
the user, or automatically by extracting the domain name from the URL that
sent the mechanism's specified HT'TP header. The domains are entered in the
form of “example.com”. We do not allow duplicate domain names. Therefore, a
domain's TLS policy can not be over-written unless after removing the existing
record. By default, the domain names are added to the strictest TLS policy that
enforces optimal TLS configurations which is the strict policy. However, if the
connection using the optimal TLS configurations could not be established due

7 We hypothetically and proactively assume TLS 1.3 is the highest version in our TLS
policy levels' definitions. This will be the case when TLS 1.3 becomes a standard
soon. However, in practice (and in our proof-of-concept) the highest possible version
is still TLS 1.2.



to lack of server support for the requested configurations, the user is presented
with a warning message. Depending on the error handling mechanism (will be
explained next) that is assigned to that particular domain, the user will be
either blocked from proceeding to the website, or warned and allowed to relax
the domain's TLS policy to a lower one (from strict to default in our case).

Pre-Defined Error Handling Mechanism. In general, there are three main
strategies for error handling in web browsers: blocking, active warning, and pas-
sive warning. Blocking is a conservative approach that blocks the user from
proceeding to the website. It should be used when the attack is certain. This
approach is adopted by the “ForceHTTPS” mechanism which considers violat-
ing the strict TLS policy by an opted-in website as an attack [I2]. On the other
hand, the active warning strategy is less conservative. It temporarily blocks the
user to warn him, but it allows him to click-through (bypass) the error through
one or multiple clicks. This strategy is used in the self-signed certificate warning
in most browsers today. Finally, the passive warning strategy shows an indica-
tor which can be negative or positive indicator without interrupting the user's
task, e.g. the padlock icon. As stated earlier, previous studies suggest that active
warnings are more effective than passive ones, but need to be used with caution
not to cause the “habituation” effect.

In our browser extension, the error handling mechanism specifies the type
of the error message that will be presented to the user in case of TLS policy
violation. Each whitelisted domain has a TLS policy and an error handling
mechanism assigned to it. We define two error handling mechanisms: blocking
and active warning. The error mechanism depends on the subscription method
(client-side or server-side) which implies the level of confidence on the server's
ability to meet optimal TLS configurations.

— If the domain subscription is client-side through a user, the user has the
choice to assign either blocking or active warning error handling to the
domain. By default, the error handling mechanism for client-side subscrip-
tion is set to active warning. However, if the user (e.g. IT administrator)
has high level of confidence that the added domain should be able to meet
the strict TLS policy (e.g. bank or enterprise server), he can select the
blocking error handling mechanism to block the user from proceeding to
the website if the TLS server response violated the policy.

— If the domain subscription is server-side through an HT'TP response header,
the mechanism automatically assign the blocking error handling mecha-
nism for the advertising domain. Servers that advertise the mechanism's
header must first ensure that they are capable of meeting the strict TLS
policy requirements. They must be aware that their users will be blocked
from reaching the server if the strict TLS configurations policy has been
violated. This is a conservative approach towards highly secure connections
and reduced decision making effort on users, in the same direction of HSTS
policy [11]. We adopt it when the confidence of the server's TLS capabilities



is high (i.e., when the knowledge comes from the server side) to avoid denial
of service.

HTTP Observers The extension employs three observers (listeners) running
in the background (as long as the extension is running):

1. HTTP Before Send Request Observer. This observer examines every
HTTPS request that goes through the main address bar. The URL is either
manually entered in the address bar by the user or automatically through
URL redirection or through clicking on links. The examination occurs before
the request is sent, against the pre-defined domain names list. If the ex-
amined URL (e.g. mail.example.com/etc) belongs to any of the whitelisted
domains (e.g. example.com), the extension enforces the TLS policy that is
assigned to that domain. If the requested URL does not belong to any of
the whitelsited domains, the extension enforces the browser's default policy.
After the policy enforcement, the request is sent. Note that the browser re-
writes the configurations in real-time. Therefore, if the next URL does not
belong to a whitelisted domain, the default policy will be re-enforced again.

2. HTTP Response Header Observer. This observer examines every HTTP
response header against a pre-defined header that we name it “ strict-
transport-security-config”’. A server that wishes to subscribe to our
strict TLS policy must send this header in its HT'TP response. Upon re-
ceiving, the browser interprets this as a request to add the domain to the
whitelist in the strict configurations policy with a blocking error han-
dling. Advertising security policies through the HTTP response header has
been employed in the literature in other policies such as HSTS [2] [I1] to en-
force HTTPS to protect against TLS stripping attacks, CSP [24] to enforce
trusted sources for page content scripts to protect against script injection at-
tacks, and PKP header [I] to bind specific public keys to a website to protect
against forged certificates. However, as stated earlier, the header advertise-
ment method assumes a TOFU, i.e. the header is sent from an authentic
server and not a man-in-the-middle. In addition, ideally such headers also
contains a maximum-age parameter that specifies an age after which the
header is expired, and the server needs to re-subscribe through the next
header (in our mechanism header expiration implies removing the domain
from the whitelist). For simplicity, in our proof-of-concept, our header con-
sists of a name field only, without any fine-grained header parameters such
as the maximum-age.

3. HTTP Error Observer. This observer is triggered when the request can
not be processed due to lack of common TLS version or ciphersuite between
the client and server. Our extension builds on the browser's built-in error
detection mechanism but we customise the browser error page if the er-
ror occurred for one of the whitelisted domains. Our extension detects the
version or ciphersuites mismatch errors by observing the loaded documents
(i.e. tabs) Uniform Resource Identifier (URI). We match every loaded tab's



URI against defined patterns that represent the Firefox's version and cipher-
suites mismatch errors URIs. In particular, we check if the loaded tab URI
starts with “about:neterror” and contains either “SSL_ERROR_UNSUP-
PORTED_VERSION” or “SSL_ERROR_NO_CYPHER_OVERLAP”. Note
that these patterns are vendor-specific. If a match is found, the extension
extracts the URL that caused the error from the tab URIL. Then, it exam-
ines the just extracted URL against the whitelist. If the URL belongs to
a whitelisted domain name, the extension updates the tab with our exten-
sion's customised error page according to the error handling mechanism that
is assigned to the domain name.

Error Message. As described earlier, if the browser could not complete the
handshake due to lack of common TLS version or ciphersuite with the server,
a customised error page is shown to the user. Our mechanism employs two
approaches for error handling: blocking and active warning. The browser
selects the strategy based on the error handling mechanism that is assigned to
the domain in the whitelist as described earlier in this section (see “Pre-Defined
Error Handling Mechanism”).

In all cases, the error message is shown when the suspicious is higher than
normal, based on the prior knowledge the browser has obtained either from the
user or from the server about the sensitivity of the domain. It presents the user
with a short message describing the reason of the error. If the error handling
mechanism is active warning the message also contains two buttons. The first
button is labeled “Restore Defaults”, and the second one is “Close”. The first
button will relax the domain's policy to the default policy and will try to
connect again, through one click. This approach is similar to the Firefox built-
in approach for handling version or ciphersuite mismatch error which presents
“Restore Defaults” button that restores the Firefox's default TLS versions and
ciphersuites and reconnect, through one click. However, there is an intrinsic
difference between our active warning error handling mechanism and the Fire-
fox built-in mechanism. In our mechanism, the “Restore Defaults” button will
change the configurations of the concerned domain only, and will not affect any
other domain that the user may desire a strict TLS policy for. Thanks to
our fine-grained TLS configurations concept that enables this feature. On the
other hand, the “Restore Defaults” in the built-in Firefox warning will change
the global configurations which will relax the configurations at a coarse-grained
level and the new configurations will affect every connection.

Our warning message design is an initial prototype. Indeed, a further study
with a focus on the usability aspect in addition to a user study needs its own
space and we leave this for future work.

6 Other Methods for Policy Advertisement

There are other server-side policy advertisement methods that can be employed.
In this section, we briefly describe some methods.



— Domain Name System (DNS) Record. The DNS [I4] in conjunction
with DNSSEC [9] (the latter is to provide authentication) can include records
for policy advertisement. This method has been proposed in HTTPSSR [22],
a mechanism that advertises TLS support by a domain name through a
DNS record, to protect against stripping attacks. If DNS in conjunction
with DNSSEC is used for TLS configurations advertisement, it eliminates
the TOFU issue and allows the configurations to be effective before the first
connection request is sent since the DNS query is performed before the TLS
request is sent. However, DNSSEC adoption might still be a barrier to rely
on DNS for policy advertisement as noted in [12].

— Certificates. The use of certificates to advertise policies has been proposed
in PoliCert [27]. PoliCert proposes a separate certificate for policies that has
optional parameter that informs the browser about the server's desired TLS
minimum security level. The policy certificate method eliminates the TOFU
issue since the certificate is signed by a trusted-third-party. However, it in-
herits the trusted-third-party complexity such as the cost since the domain
owner needs to sign the policy by multiple CAs. Furthermore, similar to the
HTTP header advertisement method, the policies can not be enforced be-
fore the first request is sent as the certificate needs to be received in a first
connection.

7 Limitations

In our proof-of-concept implementation there are few limitations: First, we used
Add-on SDK (which is deprecated starting from Firefox 57.0) to perform the
configurations re-writing which is not supported in Webextensions API. How-
ever, our present purpose is to demonstrate the feasibility of the concept. The
configurations re-writing will not represent an issue if the mechanism got imple-
mented at the browser source code level. Second, we do not consider measuring
the performance at this stage. It can be measured if the mechanism is imple-
mented at the browser source code level. As stated earlier, our scope in this
paper is to propose and test the feasibility of the concept.

8 Conclusion and Future Work

Motivated by the experimental deployment of the coming version of TLS, TLS 1.3,
we look at the problem of providing backward compatibility with legacy servers
while maintaining security in web browsers. We propose a mechanism for fine-
grained TLS security configurations in web browsers to augment browsers secu-
rity and reduce the attack surface that exploits the client support for legacy
versions, and non preferred or weak ciphersuites. Our proposal enables web
browsers to learn about websites sensitivity and enforce optimal TLS configura-
tions when connecting to sensitive websites while enforcing default configurations
when connecting to the rest of the websites. This is an improvement over the
“one-size-fits-all” coarse-grained TLS configurations mechanism that is used in



all mainstream web browsers today. Our mechanism represents a middle-ground
between optimal TLS configurations that might render many ordinary websites
unreachable and default configurations that might be abused by attackers. We
present our tool's architecture and examine the feasibility of our proposal by im-
plementing a proof-of-concept as a Firefox browser extension. We envision this
mechanism as a built-in security feature in modern web browsers and as a stan-
dardised HTTP header that augment browsers security. Future work will focus
on the usability aspect in addition to exploring new methods for server-based
policy advertisement.
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