1,611 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    Elastic hybrid MAC protocol for wireless sensor networks

    Get PDF
    The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol

    Coverage Analysis and Cooperative Hybrid Precoding for 5G Cellular Networks

    Get PDF
    5G innovations have been made in both the network deployment and the transceiver architectures in order to increase coverage, energy- and spectrum-efficiency. Future base stations (BSs) are expected to be densely deployed in places such as walls and lamp posts and cover a smaller area compared to current macro BS systems. Using large spectrum at millimeter-wave (mmWave) frequency bands and highly directional beamforming with large antenna arrays, 5G will bring gigabit-per-second data rate and low-latency communications and enable many novel services such as high-speed mmWave wireless interconnections between devices, vehicular communications, etc.. Moreover, mmWave communication systems will be based on novel hybrid beamforming architectures which have reduced hardware power consumption and cost. Thus, for better understanding of 5G performance and limitations, one of the main goals in this thesis is to analyze new models that give tractable performance metrics for dense small BS networks. Another goal in this thesis is to study mmWave hybrid beamforming schemes which enable joint transmissions in multi-cell multi-user systems. In the thesis, we show the advantages of small cells in increasing the coverage probability and reducing the path loss and shadowing, and we show the value of cooperation in terms of power consumption and outage. In [Paper A] we derive analytical expressions for the successful reception probability of the equal gain combining receiver in a network where interfering transmitters are distributed according to a Poisson point process and interfering signals are spatially correlated. The results show that the spatial correlation reduces the successful reception probability and the effect of the spatial correlation increases with the number of antennas.\ua0[Paper B] follows to study the performance of a partial zero forcing receiver. The results are simulated in an environment with blockages and are analyzed under both Rayleigh and Rician channels. The coverage probability is shown to be maximized when using a subset of antennas\u27 degree-of-freedom for useful signal enhancement and using the remaining degrees of freedom for canceling the interference from strongest interferers. Finally, in [Paper C], we propose a hybrid beamforming scheme which minimizes the total power consumption of a multi-cell multi-user network, subject to per-user quality-of-service constraints. The proposed scheme is based on decoupling the analog precoding and digital precoding. The analog precoders are only dependent on the local channel state information at each BS. Then, the digital precoders are obtained by solving a relaxed convex optimization for given analog precoders. Simulation results show that the proposed algorithm leads to almost the same RF transmit power as that of fully digital precoding, while saving considerable hardware power due to the reduced number of RF chains and digital-to-analog converters
    • …
    corecore