7,848 research outputs found

    FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environments

    Full text link
    High-speed trajectory planning through unknown environments requires algorithmic techniques that enable fast reaction times while maintaining safety as new information about the operating environment is obtained. The requirement of computational tractability typically leads to optimization problems that do not include the obstacle constraints (collision checks are done on the solutions) or use a convex decomposition of the free space and then impose an ad-hoc time allocation scheme for each interval of the trajectory. Moreover, safety guarantees are usually obtained by having a local planner that plans a trajectory with a final "stop" condition in the free-known space. However, these two decisions typically lead to slow and conservative trajectories. We propose FASTER (Fast and Safe Trajectory Planner) to overcome these issues. FASTER obtains high-speed trajectories by enabling the local planner to optimize in both the free-known and unknown spaces. Safety guarantees are ensured by always having a feasible, safe back-up trajectory in the free-known space at the start of each replanning step. Furthermore, we present a Mixed Integer Quadratic Program formulation in which the solver can choose the trajectory interval allocation, and where a time allocation heuristic is computed efficiently using the result of the previous replanning iteration. This proposed algorithm is tested extensively both in simulation and in real hardware, showing agile flights in unknown cluttered environments with velocities up to 3.6 m/s.Comment: IROS 201

    Feedback Synthesis for Controllable Underactuated Systems using Sequential Second Order Actions

    Full text link
    This paper derives nonlinear feedback control synthesis for general control affine systems using second-order actions---the needle variations of optimal control---as the basis for choosing each control response to the current state. A second result of the paper is that the method provably exploits the nonlinear controllability of a system by virtue of an explicit dependence of the second-order needle variation on the Lie bracket between vector fields. As a result, each control decision necessarily decreases the objective when the system is nonlinearly controllable using first-order Lie brackets. Simulation results using a differential drive cart, an underactuated kinematic vehicle in three dimensions, and an underactuated dynamic model of an underwater vehicle demonstrate that the method finds control solutions when the first-order analysis is singular. Moreover, the simulated examples demonstrate superior convergence when compared to synthesis based on first-order needle variations. Lastly, the underactuated dynamic underwater vehicle model demonstrates the convergence even in the presence of a velocity field.Comment: 9 page

    Attitude motion planning for a spin stabilised disk sail

    Get PDF
    While solar sails are capable of providing continuous low thrust propulsion the size and flexibility of the sail structure poses difficulties to their attitude control. Rapid slewing of the sail can cause excitation of structural modes, resulting in flexing and oscillation of the sail film and a subsequent loss of performance and decrease in controllability. Disk shaped solar sails are particularly flexible as they have no supporting structure and so these spacecraft must be spun around their major axis to stiffen the sail membrane via the centrifugal force. In addition to stiffening the structure this spin stabilisation also provides gyroscopic stiffness to disturbances, aiding the spacecraft in maintaining its desired attitude. A method is applied which generates smooth reference motions between arbitrary orientations for a spin-stabilised disk sail. The method minimises the sum square of the body rates of the spacecraft, therefore ensuring that the generated attitude slews are slow and smooth, while the spin stabilisation provides gyroscopic stiffness to disturbances. An application of Pontryagin’s maximum principle yields an optimal Hamiltonian which is completely solvable in closed form. The resulting analytical expressions are a function of several free parameters enabling parametric optimisation to be used to provide reference motions which match prescribed boundary conditions on the initial and final configurations. The generated reference motions are utilised in the repointing of a 70m radius spin-stabilised disk solar sail in a heliocentric orbit, with the aim of assessing the feasibility of the motion planning method in terms of the control torques required to track the motions
    • 

    corecore