31,165 research outputs found

    Current Status of the Use of Drones in Education in Croatia

    Get PDF
    Use of drones considerably rises which includes the education, both by the drones and about drones. We analyse the current use of drones in education in Croatia and provide predictions for its future development. We collected corresponding data using available internet sources. The analysis of the collected data indicates a systematic approach to the inclusion of drones in education. There are two directions of growth in the use of drones, the first leads to an increase in the number of drones in a particular institution and the second leads to an increase in the number of institutions that use drones in education. This article presents an insight into the current use of drones as part of education in Croatia

    PRIVACY-AWARE AND HARDWARE-BASED ACCLERATION AUTHENTICATION SCHEME FOR INTERNET OF DRONES

    Get PDF
    Drones are becoming increasingly present into today’s society through many different means such as outdoor sports, surveillance, delivery of goods etc. With such a rapid increase, a means of control and monitoring is needed as the drones become more interconnected and readily available. Thus, the idea of Internet of drones (IoD) is formed, an infrastructure in place to do those types of things. However, without an authentication system in place anyone could gain access or control to real time data to multiple drones within an area. This is a problem that I choose to tackle using a Field Programmable Gate Array (FPGA) that accelerates the k-Nearest Neighbor (kNN) encryption algorithm making it a hardware component. This will allow me to synthesis and implement the three parts of my privacy-aware and hardware-based authentication scheme for internet of drones. I use Vivado and Vivado HLS to obtain results for my authentication scheme. My scheme was able to perform large computational expensive tasks faster than other proposed IoD schemes

    Embracing drones and the Internet of drones systems in manufacturing – An exploration of obstacles

    Get PDF
    The manufacturing sector attributes the growing prominence of Drones and the Internet of Drones (IoD) systems to their multifaceted utility in delivery, process monitoring, infrastructure inspection, inventory management, predictive maintenance, and safety inspections. Despite their potential benefits, adopting these technologies faces significant obstacles that need systematic identification and resolution. The current literature inadequately addresses the barriers impeding the adoption of Drones and IoD systems in manufacturing, indicating a research gap. This study bridges this gap by providing comprehensive insights and facilitating the organisational transition towards embracing Drone and IoD technologies. This research identifies 20 critical barriers to deploying Drones and IoD in manufacturing. These barriers are validated through a global quantitative survey of 120 Drone experts and analysed via Exploratory Factor Analysis (EFA). EFA categorises these challenges into six distinct dimensions. Utilising the Analytical Hierarchy Process (AHP), these dimensions and individual barriers are ranked, incorporating feedback from five Drone specialists. The study highlights ‘Safety and Human Resource Barriers’ and ‘Payload Capacity and Battery Barriers’ as the most predominant obstacles. Key concerns include limited battery life, explosion risks, and potential damage to assets and individuals. This research significantly advances the existing literature by presenting a practical methodology for categorising and prioritising Drone and IoD adoption barriers. Employing EFA and AHP offers a globally relevant framework for stakeholders to strategically address these challenges, advancing the integration of drones and IoD systems in the manufacturing domain

    DroneTrack: Cloud-Based Real-Time Object Tracking Using Unmanned Aerial Vehicles Over the Internet

    Get PDF
    Low-cost drones represent an emerging technology that opens the horizon for new smart Internet-of-Things (IoT) applications. Recent research efforts in cloud robotics are pushing for the integration of low-cost robots and drones with the cloud and the IoT. However, the performance of real-time cloud robotics systems remains a fundamental challenge that demands further investigation. In this paper, we present DroneTrack, a real-time object tracking system using a drone that follows a moving object over the Internet. The DroneTrack leverages the use of Dronemap planner (DP), a cloud-based system, for the control, communication, and management of drones over the Internet. The main contributions of this paper consist in: (1) the development and deployment of the DroneTrack, a real-time object tracking application through the DP cloud platform and (2) a comprehensive experimental study of the real-time performance of the tracking application. We note that the tracking does not imply computer vision techniques but it is rather based on the exchange of GPS locations through the cloud. Three scenarios are used for conducting various experiments with real and simulated drones. The experimental study demonstrates the effectiveness of the DroneTrack system, and a tracking accuracy of 3.5 meters in average is achieved with slow-speed moving targets.info:eu-repo/semantics/publishedVersio
    corecore