927 research outputs found

    Higher-order Representation and Reasoning for Automated Ontology Evolution

    Get PDF
    Abstract: The GALILEO system aims at realising automated ontology evolution. This is necessary to enable intelligent agents to manipulate their own knowledge autonomously and thus reason and communicate effectively in open, dynamic digital environments characterised by the heterogeneity of data and of representation languages. Our approach is based on patterns of diagnosis of faults detected across multiple ontologies. Such patterns allow to identify the type of repair required when conflicting ontologies yield erroneous inferences. We assume that each ontology is locally consistent, i.e. inconsistency arises only across ontologies when they are merged together. Local consistency avoids the derivation of uninteresting theorems, so the formula for diagnosis can essentially be seen as an open theorem over the ontologies. The system’s application domain is physics; we have adopted a modular formalisation of physics, structured by means of locales in Isabelle, to perform modular higher-order reasoning, and visualised by means of development graphs.

    On Expert Behaviors and Question Types for Efficient Query-Based Ontology Fault Localization

    Full text link
    We challenge existing query-based ontology fault localization methods wrt. assumptions they make, criteria they optimize, and interaction means they use. We find that their efficiency depends largely on the behavior of the interacting expert, that performed calculations can be inefficient or imprecise, and that used optimization criteria are often not fully realistic. As a remedy, we suggest a novel (and simpler) interaction approach which overcomes all identified problems and, in comprehensive experiments on faulty real-world ontologies, enables a successful fault localization while requiring fewer expert interactions in 66 % of the cases, and always at least 80 % less expert waiting time, compared to existing methods

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    Detecting and Correcting Conservativity Principle Violations in Ontology-to-Ontology Mappings

    Full text link
    In order to enable interoperability between ontology-based systems, ontology matching techniques have been proposed. However, when the generated mappings suffer from logical flaws, their usefulness may be diminished. In this paper we present an approximate method to detect and correct violations to the so-called conservativity principle where novel subsumption entailments between named concepts in one of the input ontologies are considered as unwanted. We show that this is indeed the case in our application domain based on the EU Optique project. Additionally, our extensive evaluation conducted with both the Optique use case and the data sets from the Ontology Alignment Evaluation Initiative (OAEI) suggests that our method is both useful and feasible in practice.Copyright 2014 Springer International Publishing Switzerland. The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-11915-1_

    Completing and Debugging Ontologies: state of the art and challenges

    Full text link
    As semantically-enabled applications require high-quality ontologies, developing and maintaining ontologies that are as correct and complete as possible is an important although difficult task in ontology engineering. A key step is ontology debugging and completion. In general, there are two steps: detecting defects and repairing defects. In this paper we discuss the state of the art regarding the repairing step. We do this by formalizing the repairing step as an abduction problem and situating the state of the art with respect to this framework. We show that there are still many open research problems and show opportunities for further work and advancing the field.Comment: 56 page
    corecore