7,122 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Combining LiDAR Space Clustering and Convolutional Neural Networks for Pedestrian Detection

    Get PDF
    Pedestrian detection is an important component for safety of autonomous vehicles, as well as for traffic and street surveillance. There are extensive benchmarks on this topic and it has been shown to be a challenging problem when applied on real use-case scenarios. In purely image-based pedestrian detection approaches, the state-of-the-art results have been achieved with convolutional neural networks (CNN) and surprisingly few detection frameworks have been built upon multi-cue approaches. In this work, we develop a new pedestrian detector for autonomous vehicles that exploits LiDAR data, in addition to visual information. In the proposed approach, LiDAR data is utilized to generate region proposals by processing the three dimensional point cloud that it provides. These candidate regions are then further processed by a state-of-the-art CNN classifier that we have fine-tuned for pedestrian detection. We have extensively evaluated the proposed detection process on the KITTI dataset. The experimental results show that the proposed LiDAR space clustering approach provides a very efficient way of generating region proposals leading to higher recall rates and fewer misses for pedestrian detection. This indicates that LiDAR data can provide auxiliary information for CNN-based approaches
    • …
    corecore