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Abstract

Pedestrian detection is an important component for
safety of autonomous vehicles, as well as for traffic and
street surveillance. There are extensive benchmarks on this
topic and it has been shown to be a challenging problem
when applied on real use-case scenarios. In purely image-
based pedestrian detection approaches, the state-of-the-art
results have been achieved with convolutional neural net-
works (CNN) and surprisingly few detection frameworks
have been built upon multi-cue approaches. In this work,
we develop a new pedestrian detector for autonomous ve-
hicles that exploits LiDAR data, in addition to visual infor-
mation. In the proposed approach, LiDAR data is utilized
to generate region proposals by processing the three dimen-
sional point cloud that it provides. These candidate regions
are then further processed by a state-of-the-art CNN clas-
sifier that we have fine-tuned for pedestrian detection. We
have extensively evaluated the proposed detection process
on the KITTI dataset. The experimental results show that
the proposed LiDAR space clustering approach provides a
very efficient way of generating region proposals leading to
higher recall rates and fewer misses for pedestrian detec-
tion. This indicates that LiDAR data can provide auxiliary
information for CNN-based approaches.

1. Introduction

One major criterion for a wide diffusion of the au-
tonomous vehicle technology is the ability to significantly
reduce the number of road accidents, a task that highly de-
pends on the detection of surrounding agents around the ve-
hicle. Two types of sensors are usually exploited on vehi-
cles to cope with this task: cameras and LiDAR (Light De-
tection And Ranging). The purpose of the latter is to mea-
sure an accurate distance between the sensor and a target.
In the case of autonomous vehicles, it provides the distance

information of the surrounding obstacles according to the
vehicle position. The latest LiDAR sensors can generate a
dense 3-D point cloud. Using these sensors, two methods
arise from the literature to solve the problem of pedestrian
detection. The first one uses a LiDAR sensor and focuses
on creating a map of agents in motion around the vehicle
by cumulating temporal information [19]. The second ap-
proach consists of applying computer vision algorithms on
the captured images. With the recent development of deep
neural networks for image classification, current state-of-
the-art performance is achieved by CNNs. There are also
a few studies on multimodal detection [2, 13, 15], in which
the camera image is combined with additional information
such as a disparity map of a stereo-camera or a dense depth
map inferred from depth measurements.

In this paper, we also present a multimodal approach that
consists of utilizing depth measurements to create image re-
gion proposals and a state-of-the-art CNN, called ResNet,
for visual object detection [11]. The main objective of this
study is to show the usability and usefulness of LiDAR data
as an additional source of information. We developed a
novel framework to generate proposals from depth measure-
ments. Our hypothesis is that using depth data and prior
information about the size of the objects, we can reduce
the search space in the images by providing candidates and,
therefore, speeding up detection algorithms. In addition, we
hypothesize that this prior definition of the location and size
of the candidate bounding box will also decrease the num-
ber of false detections. The algorithm is built upon the idea
of clustering the 3-D point cloud of the LiDAR. It starts with
raw measurements downsampling, followed by the removal
of points belonging to the floor plane. Then, a density-based
clustering algorithm generates the candidates that are pro-
jected on the image space to provide a region of interest.
An overview of our method is shown in Figure 1. The pro-
posed approach is evaluated on the KITTI dataset. We have
observed that exploiting LiDAR data results in higher recall
rates and less misses for pedestrian detection.
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Figure 1: Pedestrian detection framework

The rest of the paper is organized as follows. In section
2, a summary of previous work on related topics is given.
Section 3 describes the methodology used in this work. Sec-
tion 4 presents relevant metrics to quantify the efficiency of
our approach and the experimental results. Finally, conclu-
sions and future work are summarized in section 5.

2. Related work

In the next subsections, we will briefly present LiDAR-
based detection and visual pedestrian detection methods. A
comprehensive overview of previous pedestrian detection
approaches can be found in [1].

2.1. LiDAR-based Detection

LiDAR sensors have been popular since the birth of au-
tonomous vehicles. Different approaches exploit these sen-
sors. The most common is the creation of an occupancy
grid map. This map represents the laser measurement den-
sity and is generated by computing a two dimensional his-
togram of the point cloud that has been projected on the x-y
plane. A probability estimate of the existence of an obsta-
cle is then evaluated by computing the posterior probability
based on temporal data. This Bayesian temporal filtering
emphasizes the surrounding objects in motion [19]. The
occupancy grid map allows to identify static objects from
moving objects. It has been intensively used for detecting
the surroundings of a vehicle in order to monitor and predict
the movement of other road users. Another approach is to
use a four-layer laser to detect pedestrians by filtering the
signal of each laser plane separately and performing a fu-
sion of the different detections [9]. Among LiDAR-camera
fusion schemes, other researchers are using a depth map
along with color channels to perform the detection. The
depth map is a “dense” representation of LiDAR measure-
ments. Premebida et al. [15] proposed to use “sparse” laser
data to generate a dense depth map of the size of the im-
age using bilateral filtering. The same idea can be applied

in a visual approach by using a stereo camera to generate a
disparity map that replaces the depth map [2, 13].

Our method shares similar ideas as in [2, 5, 7, 12, 14]:
using the depth information to reduce the search space in
the image. In [5], the authors describe a car detection and
tracking algorithm based on a single layer LiDAR. They
first cluster the LiDAR data before reconstructing the orig-
inal shape of each object based on temporal information.
Spinello et al. [18] propose a comparable approach: a one-
layer laser range is used to cluster and classify the ob-
jects. In parallel, the clusters are also classified in the im-
age space. Then both scores are merged together to pro-
duce the final decision. In [14], an algorithm using a late
fusion of dense LiDAR-based and image-based detections
is presented. The authors apply region extraction and unary
classification for each source separately. The fusion of the
image and LiDAR detections is made by finding associa-
tions between the object candidates and fusing their bound-
ing boxes. Instead of using two independent classifiers for
LiDAR and image, we generate candidate regions employ-
ing solely LiDAR and classify them based on the visual in-
formation. The algorithms described in [5, 18] are different
from our approach as they only use a one-layer laser, hence
reducing the complexity of the point cloud at the cost of
reducing the precision of the bounding boxes. In our frame-
work, the laser scanner has 64 layers, which is important to
produce high quality proposals. Indeed, the measurements
cover the entirety of the objects and they provide precisely
the geometry of each cluster. The advantage of our method
lies within the different processing steps of the point cloud,
which significantly improves the quality of the clusters.

2.2. Visual Pedestrian Detection

A CNN is an artificial neural network that contains many
convolutional layers. Those layers learn multiple filters,
usually of small size, to convolve the input. The flexibility
of CNNs allows them to be constantly improved with novel
architecture design. These novelties can modify the training
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Figure 2: Point cloud pre-processing

time (residual network [11]), classification speed (region
proposal network [10,16]), or performance (deeper or more
complex network). Due to its state-of-the-art performance,
in this paper, we use a residual network (ResNet) [11] for
the detection. The key contribution of the ResNet is to add
an identity operation in the convolutional layers to connect
the input and output of each residual block and propagate
only the difference between the current block input and out-
put. This difference is used in the following layers, allow-
ing it to learn complex structures faster. An important fac-
tor contributing to the use of neural networks in computer
vision is called transfer learning: this technique consists
of using a CNN that has already been trained on another
database to considerably reduce the training time [20]. This
technique is employed in this work to fine-tune the ResNet.

In order to evaluate the region proposal approach pre-
sented in section 3, we compare it to a region proposal net-
work (RPN) used in Faster-RCNN [16]. RPNs are intended
to reduce the search space on an image by extracting regions
of interest using a neural network. A region proposal net-
work infers the bounding boxes from the image itself prior
to the classification task. It should be noted that, in this
study, we only focus on showing the benefits of using a laser
scanner to generate region proposals and not on the whole
detection framework.

3. Methodology

The LiDAR sensor renders a dense and accurate three-
dimensional point cloud as depicted in Figure 2a. Generat-
ing candidates for classification is performed by clustering
this point cloud. The number of clusters is then reduced
in the validation process. Afterward, clusters are projected
on the image space and gone through visual aspect correc-
tion to produce the final candidates. The quality of region
proposals generated by the depth measurements is sensi-
tive to the calibration and to the processing of the three-
dimensional point cloud. As the density of the points can be
high and have a negative impact on the quality of clustering
and computation time, we decided to apply downsampling

and to remove the points corresponding to the ground.

3.1. Production of image proposals

Data reduction Reducing the density of the LiDAR point
cloud improves the speed of the clustering without compro-
mising efficiency. The density is a function of the distance
from sensor and follows a square rule:

density ∝ distance2

therefore the distribution of the points is not deterministic,
that is, it depends on the scene geometry. Downsampling is
applied as follows: a density reference is chosen and the dis-
tance axis is then discretized. For all the points in one dis-
cretization step, the data is reduced according to the density
reference, if the density is higher than the reference value.
The resulting density difference is illustrated in Figure 2b.

Ground extraction The motivation behind extracting
floor points is to facilitate the clustering process. To per-
form ground extraction, we assume that the lower points in
the z-axis belong to the floor. We extract them by discretiz-
ing the floor (x and y-axis) with a step given as parame-
ter, and for each square the lowest (z-axis) point is kept.
Then, the other points in a reasonably small distance from
this lower reference are also counted as floor points. The
plane is found by computing polynomial least-square fitting
of degree two. This approach has been chosen for its speed
and simplicity and the outcome of this process is visible in
Figure 2c. The random sample consensus (RANSAC) algo-
rithm was also considered [6]. The latter is iterative, hence
the computation time is non-deterministic. Additionally,
the nature of the LiDAR sensor generates irregular density
measurements: objects have a higher point density than the
ground and, therefore, it can alter RANSAC performance.

Clustering We require a simple and fast clustering algo-
rithm that does not need any initialization. According to
these criteria, we choose the “Density Based Spatial Clus-
tering of Applications with Noise” (DBSCAN) algorithm



[3]. It is a density-based algorithm designed on the con-
cepts of density-reachability and density-connection:

1. density-reachable: a point p is density reachable from
a point q if there is a chain of points p1, ..., pn, p1 =
p, pn = q such that pi+1 is directly density-reachable
from pi. A point p is directly density-reachable if the
point p is included in the area defined by a circle cen-
tered on q of radius EPS.

2. density-connected: a point p is density connected to a
point q if there is a point o such that both, p and q are
density-reachable from o.

The algorithm visits all points once and for each p aggre-
gates all density-reachable points according to the parame-
ters EPS and MinPts. MinPts defines the minimum number
of points that a cluster should contain, otherwise the group
is considered as noise. EPS is a parameter that defines the
maximum allowed distance between two density-reachable
points. By projecting the clusters into the image space, we
generate the candidates for detection (see Figure 3a).

Validation, ratio and size adjustment In order to gener-
ate more accurate candidate proposals, we make assump-
tions on the visual aspect of a pedestrian. A candidate
is considered not valid if the width (∆x) of the cluster is
greater than 0.1[m], the height (∆y) greater than 0.4[m] or
the depth (∆z) lower than 1.2[m].

The shape of the candidates are then changed in two
ways: the lower bound of the bounding box is adapted to
match the ground floor and the aspect ratio of candidates is
adjusted to a fixed value. This operation is useful to have
a constant input size for classification and to avoid stretch-
ing effects when resizing. To select the best parameters for
aspect ratio correction, we focus on the best precision pos-
sible for each parameter value. Results after this step are
shown in Figure 3b.

3.2. Classification

The classification of the candidates is performed by a
convolutional neural network. In this paper, we use the
popular, high performing Residual Network (ResNet) [11].
The particularity of this network lies in the new architecture
composed of residual blocks: they provide the advantage of
a more stable training and a faster convergence [11]. The
network has been pre-trained on the ImageNet [17] dataset.
We have fine-tuned it for pedestrian detection on a reduced
version of the KITTI training set that contains 3740 frames.
During fine-tuning, we apply data augmentation by flipping
the input images, hence doubling the amount of positive in-
put samples. Optimization is performed by stochastic gradi-
ent descent with a learning rate value of 1e−4. The training
took 2500 iterations with a batch size of 64.

(a) Cluster proposal

(b) Size and ratio corrections

Figure 3: Visualization of the region proposal

4. Experiments

In this section, we will first present the dataset and the
evaluation metrics. Then the experimental results will be
conveyed and discussed.

4.1. Dataset and evaluation

We have used the KITTI dataset [8] for the experiments.
The particularities of this dataset regarding pedestrian de-
tection are that some labels are highly occluded and the
number of objects of small size is high. The y-axis size
varies from 13 to 294 pixels for pedestrians. Moreover,
the centering and alignment of the labels are not coherent
through the images, and consequently introduce difficulties
for the classifier to learn how to localize the candidates pre-
cisely.

The training set is composed of 7481 images and labels
of the test set are not available. As a consequence, all the
results reported in this work are computed on the validation
set. Similar to [15], the provided training set is split into
two subsets that are used as training set and validation set
for our experiment: 3740 frames are used for training, and
3741 for validation.

The label matching criterion is an intersection over union
(IoU) of 50%, IoU > 0.5, described in the PASCAL VOC
challenge [4, 8].

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)

With Bp the detection bounding box and Bgt the ground
truth bounding box. Multiple detections of the same object
are counted as false positives (FP ).



4.2. Experimental results

The comparison of different region proposal schemes in
terms of their effects on misses and recall rates are given
in Table 1. In the table, Clustering refers to our proposed
method based on LiDAR data. Sliding window refers to
analyzing the image in a sliding window scheme. Faster
R-CNN [16] uses its own RPN based on visual informa-
tion. As can be observed the proposed approach provides
fewer misses and higher recall rates. Especially, compared
to a region proposal framework based on visual informa-
tion, i.e. the one utilized at Faster R-CNN, the decrease of
miss detection rate is significant. This indicates that LiDAR
data can be utilized, in addition to visual information, to im-
prove the performance of CNN-based pedestrian detection
systems by reducing the miss detections and increasing the
recall. Please note that, generally, the recall rate is very
sensitive to the aspect ratio of the proposals. For perfor-
mance comparison, we fixed the aspect ratio at the value
which minimizes the number of missed labels. Addition-
ally, the parameters of the different approaches can impact
significantly the recall value. For example, sliding window
can fail to overlap adequately two labels that are close to
each other. Our approach covers two close objects more ef-
ficiently when they are clustered separately. Although the
Faster R-CNN is a generic object detection framework, we
carefully adapted the aspect ratio of the resulting proposal
output to have a representative comparison.

Figure 4 plots the recall rates with respect to different
IoU values. Similar to the findings in Table 1, LiDAR clus-
tering achieves higher recall rates also at different IoU val-
ues. Moreover, compared to the sliding window scheme, it
reduces the number of regions from 4009 down to 307 as
presented in Table 2. The computational overhead of de-
termining candidate regions is negligible as can be seen in
the last column of Table 2. Thus, the proposed approach re-
duces the amount of computation significantly with respect
to the sliding window scheme. Compared to the visual in-
formation based region extraction as in Faster R-CNN, em-
ploying LiDAR data requires more processing time. How-
ever, considering the detection times, listed in the second
column of Table 2, this difference is also negligible. The
detection time refers to the inference time when the regions
are fed one by one to the classification network.

Region extraction Missed labels (FN) Max recall
Clustering 180 0.92
Sliding window 219 0.90
Faster R-CNN [16] 601 0.73

Table 1: Number of labels that are missed (FN) and max-
imum recall possible on the validation set with an IoU of
0.5
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Figure 4: Comparison of recall rates with respect to differ-
ent IoU values

Region extraction Number
of regions

Detection
time

ROI time

Clustering 307 21 [s] 0.5 [s]
Sliding window 4009 219 [s] - [s]
Faster R-CNN [16] 300 21 [s] 0.3 [s]

Table 2: Comparison of different region extraction methods

The final performance of pedestrian detection in real use-
case scenario strongly depends on the tuning of parameters,
bounding box adaptations, and non-maximum suppression
function. Indeed, the max recall is bounded by the region
proposal approach as shown in the previous experiment, and
the precision highly depends on the non-maximum suppres-
sion employed after detection.

Table 3 shows a clear difference when using cluster can-
didates compared to using sliding window. As expected,
the act of reducing the number of candidates to classify im-
pacts the precision by decreasing the number of false pos-
itives. We observe an absolute increase of around 20%
on medium difficulty average precision. The recall is im-
pacted as well by the decrease of the number of false neg-
atives. Please again note that the purpose of the study is to
show the benefits of employing LiDAR data to improve re-
gion proposals. Therefore, we combined the proposed ap-
proach with a generic state-of-the-art object classification
framework, namely, ResNet. Building an elaborate and op-
timized CNN-based pedestrian detection system is beyond
the scope of the paper. However, the presented ideas, i.e.
exploiting LiDAR information for improved region propos-
als, can also be incorporated to the state-of-the-art vision-
only pedestrian detection approaches.

Detection AP easy AP medium AP hard
ResNet, sliding window 35.8 % 34.3 % 31.2 %
ResNet, clustering 56.4 % 54.5 % 50.4 %

Table 3: Average precision (AP) for the different detection
schemes



5. Conclusion

In this paper, we presented a novel region proposal
framework based on depth measurements from the LiDAR.
The experimental results showed the range of performance
gain using our region proposal approach. It provides re-
duction in the image search space, the amount of miss de-
tections and increase in recall. An advantage of our region
proposal resides in the fact that it can be applied prior to
any detection framework. This research can therefore be
continued by extending the results with more efficient and
deeper networks trained for pedestrian detection. In sum-
mary, LiDAR data can provide complementary information
to the visual information and can be utilized to improve the
CNN-based pedestrian detection approaches further.
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