960 research outputs found

    Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping

    Full text link
    Instrumenting and collecting annotated visual grasping datasets to train modern machine learning algorithms can be extremely time-consuming and expensive. An appealing alternative is to use off-the-shelf simulators to render synthetic data for which ground-truth annotations are generated automatically. Unfortunately, models trained purely on simulated data often fail to generalize to the real world. We study how randomized simulated environments and domain adaptation methods can be extended to train a grasping system to grasp novel objects from raw monocular RGB images. We extensively evaluate our approaches with a total of more than 25,000 physical test grasps, studying a range of simulation conditions and domain adaptation methods, including a novel extension of pixel-level domain adaptation that we term the GraspGAN. We show that, by using synthetic data and domain adaptation, we are able to reduce the number of real-world samples needed to achieve a given level of performance by up to 50 times, using only randomly generated simulated objects. We also show that by using only unlabeled real-world data and our GraspGAN methodology, we obtain real-world grasping performance without any real-world labels that is similar to that achieved with 939,777 labeled real-world samples.Comment: 9 pages, 5 figures, 3 table

    Image-guided Landmark-based Localization and Mapping with LiDAR

    Get PDF
    Mobile robots must be able to determine their position to operate effectively in diverse environments. The presented work proposes a system that integrates LiDAR and camera sensors and utilizes the YOLO object detection model to identify objects in the robot's surroundings. The system, developed in ROS, groups detected objects into triangles, utilizing them as landmarks to determine the robot's position. A triangulation algorithm is employed to obtain the robot's position, which generates a set of nonlinear equations that are solved using the Levenberg-Marquardt algorithm. The presented work comprehensively discusses the proposed system's study, design, and implementation. The investigation begins with an overview of current SLAM techniques. Next, the system design considers the requirements for localization and mapping tasks and an analysis comparing the proposed approach to the contemporary SLAM methods. Finally, we evaluate the system's effectiveness and accuracy through experimentation in the Gazebo simulation environment, which allows for controlling various disturbances that a real scenario can introduce
    • …
    corecore