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Abstract.

Mobile  robots  must  be  able  to  determine  their  position  to  operate  effectively  in  diverse 

environments. The presented work proposes a system that integrates LiDAR and camera sensors 

and utilizes the YOLO object detection model to identify objects in the robot's surroundings. The 

system, developed in ROS, groups detected objects into triangles, utilizing them as landmarks to 

determine the robot's position. A triangulation algorithm is employed to obtain the robot's position, 

which  generates  a  set  of  nonlinear  equations  that  are  solved  using  the  Levenberg-Marquardt 

algorithm.

The  presented  work  comprehensively  discusses  the  proposed  system's  study,  design,  and 

implementation. The investigation begins with an overview of current SLAM techniques. Next, the 

system  design  considers  the  requirements  for  localization  and  mapping  tasks  and  an  analysis 

comparing the proposed approach to the contemporary SLAM methods. Finally, we evaluate the 

system's  effectiveness  and  accuracy  through  experimentation  in  the  Gazebo  simulation 

environment, which allows for controlling various disturbances that a real scenario can introduce.

Keywords: Gazebo, Image-guided landmark-based localization, LiDAR, ROS 2, SLAM, YOLO
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1 Introduction

In recent years, the field of robotics has made significant progress, and one of the 

biggest  challenges in  this  area is  the localization of robots.  Precise localization is 

essential [1] for a robot to perform tasks effectively and navigate its environment. 

Researchers have proposed various approaches to address this challenge, including 

landmarks localization and mapping [2,3].

One technique that researchers have explored is SLAM, or simultaneous localization 

and mapping. It refers to the ability of a robot or autonomous system to build a map of 

its environment while simultaneously determining its own location within that map. 

SLAM technologies have widespread adoption in various applications, ranging from 

self-driving  cars,  augmented  and  virtual  reality,  to  drones  and  service  robots. 

Advances in hardware and algorithms have enabled SLAM systems to become faster, 

more robust, and capable of operating in complex and dynamic environments. This 

thesis  proposes  a  semantic  SLAM approach  that  takes  advantage  of  the  system’s 

ability to recognize objects and construct a map.

1.1 Significance and motivation

This thesis presents a novel system that integrates technologies like ROS middleware, 

YOLO object detection model, and the Gazebo simulation environment to solve the 

robot's localization problem based on landmarks localization and mapping. A study of 

different approaches is presented, including the semantic SLAM. After conducting the 

analysis, design, and implementation, the system provides a comprehensive solution 
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that  combines  the  strengths  of  each  component  to  achieve  accurate  localization 

results.

1.2 Related works

Previous  studies  related  to  the  presented  thesis  include  an  autonomous  driving 

simulator by W. Cao et al. [4], a 3D object detection system for robotic arm grasping 

by C. -W. Chen et al. [5], and an automated detection system for a UAV  by C. M'Sila 

et al. [6]. It also draws upon landmark-based localization and triangulation algorithms 

from various sources. A landmark-based localization system in an urban environment 

by X. Qu, B. Soheilian and N. Paparoditis [7], a triangulation toolbox based on open-

source by S. Choi [8], a localization system for indoor mobile robots and AGVs by 

Loevsky and I. Shimshoni [2], a robot localization system based on visual landmarks 

by H. M. Ebied and M. S. Abdel-Wahab [9], a vision-based localization algorithm 

based on landmark matching, triangulation, reconstruction, and comparison by D. C. 

K. Yuen and B. A. MacDonald [10], a generalized geometric triangulation algorithm 

for a mobile robot by J. S. Esteves, A. Carvalho, and C. Couto [11].

1.2.1 ROS, YOLO and Gazebo for autonomous and robotic systems

W. Cao et al. [4] describe the development of an autonomous driving simulator built 

using  the  ROS  framework  with the Gazebo simulation environment and the YOLO 

object  detection model.  The simulator  is  designed to  evaluate  the  performance of 

autonomous driving  algorithms in  a  realistic  simulation  environment.  The authors 

demonstrate that the simulator can accurately mimic real-world scenarios and can be 

used  to  train  autonomous  driving  models  effectively.  ROS and Gazebo  allow the 

integration of multiple software components and the ability to simulate a range of 

driving  scenarios,  while  YOLO  provides  fast  and  accurate  object  detection.  The 
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results of this study highlight the potential for using this type of simulator for the 

development and testing of autonomous driving systems.

C. -W. Chen et al. [5] describe a system that uses ROS to control a robotic arm in a 

simulated environment created with Gazebo. The system uses the YOLO algorithm 

for  3D  object  detection  to  identify  and  locate  objects  within  the  simulated 

environment. The inverse kinematics algorithm then processes the detected objects to 

determine the necessary movements of the robotic arm to grasp the object. The system 

can successfully detect and grasp objects in the simulated environment, demonstrating 

the potential of this approach for real-world applications.

C. M'Sila et al. [6] discuss developing a system for detecting foreign object debris 

(FOD)  using  a  UAV.  The  system uses  ROS as  the  central software  platform for 

controlling  the  UAV.  In  this  case,  ROS controls  the  UAV's  flight  and navigation. 

YOLO was  used  to  detect  FOD in  the  UAV's  camera  feed  and then  provide  the 

necessary information for the UAV to navigate and inspect the area autonomously. 

Gazebo  was  used  to  simulate  the  UAV's  environment  and  test  the  foreign  object 

detection capabilities of the system. Overall, [1.2.3] discusses using ROS, YOLO, and 

Gazebo to create an automated foreign object debris detection system based on UAVs. 

These technologies are used together to provide a robust and efficient solution for 

detecting and inspecting FOD in a simulated environment.

1.2.2 Visual landmark-based systems

X.  Qu,  B.  Soheilian,  and  N.  Paparoditis  [7] present  a  novel  approach  for  object 

localization in urban areas using visual landmarks. The authors argue that traditional 

GNSS/GPS  and  inertial  navigation  systems  are  not  always  reliable  in  urban 

environments and propose a new system that uses a camera and a deep neural network 

to  recognize  landmarks  in  real-time.  The  network  is  trained  on  images  of  urban 

landmarks, and the GNSS coordinates dataset. The authors evaluate the system on a 



10

dataset of urban images. They show that it outperforms traditional GNSS and INS in 

terms of localization accuracy, is robust to changes in lighting conditions, and works 

well even in areas with limited GNSS coverage.

S.  Choi  [8]  presents  an  open-source  toolbox  for  benchmarking  and  evaluating 

landmark-based  localization  algorithms.  The  author  provides  a  comprehensive 

collection  of  algorithms  and  datasets  for  landmark-based  localization,  including 

popular methods such as Extended Kalman Filters, Unscented Kalman Filters, and 

Particle  Filters.  The  toolbox  also  includes  evaluation  metrics  and  scripts  for 

comparing the performance of different algorithms. The author shows that the toolbox 

can be used for both research and practical applications, making it a valuable resource 

for researchers and practitioners in the field of landmark-based localization.

Loevsky  and  I.  Shimshoni  [2]  present  a  new  method  for  reliable  and  efficient 

landmark-based  localization  of  mobile  robots.  The  authors  propose  a  system that 

combines multiple sensors, including cameras and laser rangefinders, to detect and 

recognize  environmental  landmarks.  The  system  also  employs  a  particle  filter 

algorithm  to  estimate  the  robot's  position  and  orientation  based  on  the  detected 

landmarks. The authors evaluate the approach on real-world datasets and show that it 

outperforms existing methods in terms of accuracy and computational efficiency. The 

results  demonstrate  the potential  of the proposed method for reliable  and efficient 

landmark-based localization of mobile robots in real-world environments.

1.2.3 Geometric landmark-based systems

H. M. Ebied and M. S. Abdel-Wahab [9] present a method for robot localization using 

visual  landmarks.  The  authors  propose  a  system  that  combines  a  camera  and  a 

triangulation algorithm to detect and recognize landmarks in the environment. The 

system uses the detected landmarks to estimate the robot's position and orientation, 

and the authors evaluate the the system's performance on real-world datasets.  The 
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results  show that the proposed method is  effective for robot localization based on 

visual  landmarks  and  has  the  potential  for  use  in  various  applications,  such  as 

autonomous navigation and mobile robotics.

D. C. K. Yuen and B. A. MacDonald [10] discuss the use of a landmark system to 

determine  the  position  and  orientation  of  a  mobile  robot.  The  system  works  by 

identifying and tracking landmarks in the environment and using them as reference 

points for estimating the robot's pose. The robot can detect landmarks in real-time. 

Once the landmarks are identified, the system employs a probabilistic framework to 

estimate the robot's pose based on geometric and visual cues obtained from the robot's 

sensors.  The  geometric  cues  are  used  to  establish  the  relative  positions  of  the 

landmarks,  while  the  visual  cues  are  used  to  verify  and refine  the  estimate.  This 

combination  of  geometric  and  visual  cues  allows  the  system  to  provide  robust 

performance in the presence of occlusions and sensor noise.

J. S. Esteves et. al [11] present a new algorithm for mobile robot self-localization. The 

authors propose a generalized geometric triangulation method that can estimate the 

robot's position and orientation based on the observations of multiple landmarks in the 

environment. The algorithm is designed to handle arbitrary landmark configurations 

and can operate in real time. The authors evaluate the algorithm on both simulation 

and real-world datasets and show that it outperforms existing methods in terms of 

accuracy and computational efficiency. The results demonstrate the potential of the 

proposed algorithm for mobile robot self-localization in real-world environments.

1.3 Contribution

The present thesis  uses image-guided landmark-based localization and mapping to 

determine a robot's position.  The study presents the development,  implementation, 

and  evaluation  of  an  approach  to  resolve  the  problem  of  robot  positioning.  The 

primary contributions of this thesis are:
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1. Development of an architecture for a landmark-based localization and mapping 

system based on the SLAM approach.

2.  Integration  of  ROS middleware  and YOLOv5 object  detection  model  with  the 

Gazebo simulation environment.

3.  Design  and  implementation  of  the  components  that  support  the  mapping  and 

computation of the robot’s position.

4. Design of the workflow that allows experimentation on the system.

1.4 Structure

• Chapter 2 describes the theoretical foundations and key concepts that .guided 

the study, as well the development and implementation of the research.

• Chapter 3 offers a detailed exposition of the different components used in the 

development of the system, as well as an explanation of the design decisions 

made during the development phase. 

• Chapter  4 focuses  on  a  detailed  description  of  the  various  components 

constituting the system. Additionally, it provides a comprehensive overview of 

the project's functionality.

• Chapter 5 is about the experimental results of the project.

• Chapter 6 brings the project’s conclusion and ideas for future research.
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2 Background

The  objective  of  this  chapter  is  to  provide  a  comprehensive  overview  of  the 

foundational concepts, techniques, and technologies that form the basis of this work. 

By exploring the required background information, the reader will gain insight into 

the topic and the reasoning behind the research. This chapter aims to create a clear 

and defined context for the following discussions and analyses in the thesis.

2.1 SLAM

SLAM,  or  Simultaneous  Localization  and  Mapping,  is  a  fundamental  concept  in 

robotics and computer vision. It refers to the ability of a device to construct a map of 

its environment and determine its location within that map simultaneously. This is 

achieved by collecting sensory data from the device's  sensors, such as cameras or 

lasers,  and  processing  that  data  with  algorithms  to  create  a  representation  of  the 

environment.  As the device moves, the SLAM algorithm updates the map and the 

device's location within the map, allowing it to maintain an accurate understanding of 

its environment even as it moves. SLAM has been the subject of extensive research 

[12],  with  many  algorithms  and  approaches  proposed  to  address  the  various 

challenges. This research is driven by the need for accurate and efficient mapping and 

localization  in  applications  such  as  autonomous  vehicles,  drones,  and  augmented 

reality.

2.1.1 Modern Visual SLAM

In their recent work, Xia  et al introduce a  modern V-SLAM system, as depicted in 

Figure 2.1. Such a system is commonly made up of the following components:
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• Data acquisition through sensors, specifically image or video acquisition via 

cameras.

• Visual odometry, which estimates the robot's position and landmark locations 

based on successive frames in an image sequence.

• State estimation that globally estimates the state by fusing the results of visual 

odometry.

• Relocalization that enables the system to relocate when tracking fails or the 

map is reloaded.

• Loop  closure  detection,  which  maps  the  environment  based  on  the  task 

requirements.

• Mapping, which involves creating maps to meet the task requirements.

2.1.2 Hybridized SLAM

C.  Debeunne  and  D.  Vivet proposed  a  Hybridized  SLAM model  framework  that 

consists of three main steps, as illustrated in Figure 2.2. The framework can be broken 

down into the following steps:

1) Data processing step. 

• Performs feature detection and tracking for LiDAR and Camera.

2) Estimation step:

• Estimates  the  vehicle  displacement  from  the  tracked  features  using  ICP, 

epipolar  geometry,  proprioceptive  sensors,  or  a  fusion  of  each,  such  as  a 

Kalman filter or a multi-criteria optimization.
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• Tries to detect and match landmarks from the map to the features.

• Refines the pose through filtering/optimization once matching is done.

• Estimates new landmarks.

3) Global Mapping Step:

• Determines whether the current data defines a key frame and brings in enough 

new information.

• Optimizes the trajectory locally or globally based on the detection of a loop 

closing.

2.1.3 Visual-based semantic SLAM

Visual-based semantic  SLAM is  a  type  of  SLAM that  combines  visual  data  with 

semantic information to create a map of an environment and determine the device's 

location within that map. In visual-based semantic SLAM, the device's camera is used 

to capture images of the environment, and algorithms are used to process the images 

to extract both visual and semantic information. Visual information is used to create a 

      Figure 2.2: Hybridized SLAM global framework. [1]
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map of the environment, while semantic information is used to label objects in the 

environment,  such  as  furniture,  doors,  and  walls.  The  combination  of  visual  and 

semantic  information  enables  the  device  to  create  a  more  detailed  and  accurate 

environment map, particularly useful in applications such as augmented reality and 

robotic navigation. [12]

Figure 2.3 depicts the architecture of a semantic SLAM framework, which establishes 

independent tracking for individual objects within a 3D scene. This design allows for 

efficient feature selection and data association, from 2D to 3D and from single thread 

to multi-thread, leading to improved VO robustness and accuracy in practice.

2.2 Sensor fusion

Sensor fusion is the process of combining information from multiple sensors to create 

a more complete and accurate representation of the environment. In the context of 

camera and LiDAR sensors, sensor fusion combines the strengths of both sensors to 

provide a more robust and accurate perception of the surroundings.

LiDAR sensors measure distances to objects by emitting laser beams and measuring 

the time it takes for the reflections to return. They provide a dense and precise 3D 

representation of the environment, which is helpful for obstacle detection, mapping, 

and localization tasks.

Figure 2.3: Architecture of a semantic SLAM system. [12]
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Camera sensors,  on the other  hand,  capture images of the environment,  providing 

information about objects' color, texture, and shape. They are widely used in computer 

vision tasks such as object recognition, tracking, and segmentation.

By  combining  the  information  from both  sensors,  the  limitations  of  each  can  be 

overcome. For example, lighting conditions can affect cameras and are less accurate 

than LiDAR for measuring distances. At the same time, LiDAR can struggle with 

objects that have low reflectivity or are transparent. By fusing the information from 

both  sensors,  a  more  robust  and  accurate  perception  of  the  environment  can  be 

obtained.

Several  techniques  for  fusing  camera  and  LiDAR  data  include  point  cloud 

registration,  projection  of  LiDAR points  onto the  image,  image segmentation and 

LiDAR point classification, and deep learning approaches.

2.2.1 Sensor fusion techniques for camera and LiDAR

Some of the techniques used for camera and LiDAR sensor fusion include point cloud 

registration, projection of LiDAR points onto image, image segmentation and LiDAR 

point  classification,  and  deep  learning  approaches  [13,14].  Each  of  the  previous 

techniques  has  its  advantages  and limitations,  and  the  choice  of  the  best  method 

depends  on  the  application's  specific  requirements.  For  example,  point  cloud 

registration  is  a  good choice for  applications  requiring  precise  alignment  between 

sensors.  At  the  same  time,  deep  learning  approaches  may  be  more  suitable  for 

applications where complex relationships between the sensors need to be learned.

2.2.1.1 Point cloud registration

A process of aligning the point cloud data from the LiDAR sensor with the image data 

from the  camera.  This  process  can  be  done  by  finding  correspondences  between 

features  in  the  point  cloud  and  the  image  and  using  them  to  estimate  the 

transformation between the two sensors.
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2.2.1.2 Projection of LiDAR points onto image

The technique involves projecting the 3D points from the LiDAR point cloud onto the 

camera's image plane. This technique allows for integrating the spatial information 

from the LiDAR and the color and texture information from the camera.

2.2.1.3 Image segmentation and LiDAR point classification

This technique involves segmenting the image into different regions and classifying 

the points in the LiDAR point cloud based on their location relative to the segments. 

This information can then be used to improve the accuracy of object detection and 

segmentation algorithms.

2.2.1.4 Deep learning

Recent advances in deep learning have enabled the development of end-to-end models 

that can fuse camera and LiDAR data and perform tasks such as object detection, 

semantic segmentation, and depth estimation. These models can learn to exploit the 

complementary information from both sensors to achieve improved performance.

2.3 Robot Operating System

The acronym ROS stands for Robot Operating System, despite its categorization as a 

middleware  platform for  developing  robotic  applications  rather  than  an  operating 

system. This open-source platform is both multi-domain and multi-platform. In the 

context of this project, the version of ROS2 Foxy was utilized. This updated version 

provides a comparable interface to ROS1, built on top of DDS, a software middleware 

that facilitates a publish-subscribe transport system.
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2.3.1 ROS nodes

A ROS  node  can  be  described  as  an  individual  execution  process  similar  to  a 

standalone program. Multiple ROS nodes operate simultaneously and interact through 

a primarily event-driven mechanism, utilizing shared data.

2.3.2 ROS topics

The fundamental structure of ROS is based on the publish/subscribe architecture, as 

depicted in Figure 2.4. This concept is similar to that found in software packages such 

as MQTT, ZeroMQ, RabbitMQ, or ModBus. However, unlike these other packages, 

ROS does not utilize a broker. Instead, in ROS1, there is a ROS master that facilitates 

node discovery,  while in ROS2, nodes  can discover each other through automated 

discovery mechanisms as it operates in a distributed fashion.

2.3.3 ROS Messages

ROS provides pre-defined messages that standardize the representation of common 

data types, such as sensor data, navigation data, and geometric data. Standardizing 

Figure 2.4: Communication framework used by ROS. [15]
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these  data  types  enables  effortless  communication  between  nodes  programmed in 

different languages, as they can be efficiently serialized. Furthermore, the ability to 

record  these  messages  to  files,  known  as  "bags"  or  "rosbags",  offers  a  valuable 

resource for debugging and studying the performance of a ROS system over time. The 

standardization of data and ease of communication between nodes written in different 

programming languages make ROS an indispensable tool for developing of advanced 

robotic systems.

2.3.4 SDF and URDF files

The  Simulation  Description  Format  (SDF)  is  a  file  format  used  to  describe  the 

structure, kinematics, dynamics, and sensors of robots for simulation and visualization 

[16].  SDF  is  natively  supported  by  the  Gazebo  simulator,  providing  an  API  for 

loading and manipulating SDF models. The SDF format uses a custom XML-based 

format,  making it  simple to  parse and manipulate  data.  The previous  makes it  an 

efficient  and  effective  solution  for  describing  robots  in  simulation  environments, 

providing a  straightforward way to define the behavior  and appearance of  robotic 

systems for a variety of applications.

It is important to note that SDF is not the only file format used for robot description. 

The Unified Robot Description Format (URDF) is another commonly used format 

developed by the ROS community [17]. While URDF and SDF both serve similar 

purposes, there are differences between the two formats in terms of complexity and 

structure.  URDF  is  generally  considered  a  more  complex  format,  while  SDF  is 

simpler and better suited for use with the Gazebo simulator. Ultimately, the choice 

between URDF and SDF will depend on the specific requirements of the simulation 

task.
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2.4 YOLOv5

YOLO, an acronym for “You Only Look Once” is an object detection model. The 

characteristics of YOLOv5 are lightweight, easy to use, quick training and inference, 

good performance,  and versatility,  making the  model  suitable  for  real-time object 

detection. YOLOv5 offers four models, namely s, m, l, and x, each having different 

detection accuracy and performance, as shown in the graph from Figure 2.5

2.4.1 YOLOv5 architecture

Figure  2.6  displays  the  architecture  of  YOLOv5,  which  comprises  three  distinct 

components: the Backbone, which is CSPDarknet; the Neck, which is PANet; and the 

Head, which is the YOLO layer.

An overview of the model’s versions is presented in Table 2.1. Inference speed on 

CPU, GPU , and the number of parameters for an image size of 640 pixels.
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       Figure 2.6: Architecture overview of YOLOv5. [19]

    Table 2.1: Pre-trained checkpoints. [18]
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2.4.2 Datasets

Customized  datasets  can  be  utilized  to  train  machine  learning  models.  For  this 

purpose,  YOLOv5 and  Ultralytics  offer  tools  to  facilitate  dataset  labeling.  In  the 

context of this project, the training phase was omitted.

2.4.2.1 COCO

The Common Objects in Context (COCO) dataset is a well-known resource widely 

used  for  training  and  evaluating  object  detection  algorithms.  The  COCO  dataset 

contains more than 328,000 images and labels across 80 object categories and has 

been used to train object detection models, including YOLOv5. [20]

2.4.2.2 COCO 128

In addition to the full COCO dataset, there is also a smaller version known as COCO 

128 [21], which contains a subset of 128 categories from the original COCO dataset. 

COCO 128 provides a more manageable dataset for training and evaluating object 

detection models while providing a diverse set of object categories to work with.

The COCO 128 dataset has been used to evaluate the performance of object detection 

algorithms,  including  YOLOv5.  It  is  an  adequate  dataset  for  training  and  testing 

object detection models. The COCO 128 dataset provides a good balance between 

dataset size and complexity, making it a valuable resource for the computer vision 

community.

2.5 Simulation environment

A simulation environment is a software tool that facilitates the creation of a virtual 

replica of a real-world system. This virtual representation can be utilized for testing, 

experimentation, and analysis without impacting the system.
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2.5.1 Gazebo simulator

Gazebo is a 3D dynamic simulator that enables the simulation of robot’s behavior in 

complex indoor and outdoor environments in accurately and efficiently. Like game 

engines, Gazebo uses physics simulation with a higher degree of fidelity, a collection 

of  sensors,  and user  interfaces.  The common uses of Gazebo are:  testing robotics 

algorithms,  designing  robots,  and  performing  regression  testing  with  realistic 

scenarios. Some key features of Gazebo are multiple physics engines, a rich library of 

robot  models  and  environments,  a  wide  variety  of  sensors,  and  convenient 

programmatic and graphical interfaces.

2.5.2 Turtlebot robot

A Gazebo  TurtleBot  simulation  is  a  virtual  representation  of  the  TurtleBot  robot 

created using the Gazebo simulation environment. In a Gazebo TurtleBot simulation, 

the TurtleBot is modeled in 3D, and its various components and sensors are simulated 

to  behave as  they  would in  the  real  world.  This  virtualization  allows  developers, 

researchers, and educators to test and validate their algorithms and control systems in 

a safe and controlled environment without needing a physical TurtleBot.

Using  Gazebo  to  simulate  a  TurtleBot,  users  can  perform  various  tasks  such  as 

mapping, navigation, and object recognition. They can even test multi-robot scenarios 

in which multiple TurtleBots interact with each other in a simulated environment. The 

previous can provide valuable insights and help users fine-tune their algorithms and 

control systems before deploying them on physical robots.

Figure 2.7 shows two versions of the Turtlebot robot, while Figure 2.8 portrays the 

simulated representation of the Turtlebot Waffle Pi.
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2.6 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm is a well-known optimization method for solving 

nonlinear least-squares problems [23]. Due to its versatility, it has gained widespread 

use within the field of robotics. It has been employed in various problems related to 

SLAM, such as mapping, navigation, and applications for autonomous vehicles [24].

Within  the  context  of  SLAM,  the  algorithm  is  applied  recurrently  to  revise  the 

estimates  of  both  the  robot's  pose  and  the  positions  of  landmarks,  where  a 

probabilistic framework such as an extended Kalman filter or particle filter is utilized. 

In  each  iteration,  the  Levenberg-Marquardt  algorithm  is  applied,  resulting  in  an 

updated estimation of the Robot's pose and the positions of the landmarks.
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3 Design overview

In  this  chapter,  the  software  design  decisions  of  the  system  are  presented  and 

discussed. First, the system and its phases are described in a high-level view. Then we 

describe the components that integrate the system, such as the simulator, movement 

control for the robot, object recognition, object localization & mapping, and finally, 

the robot's position computation.

3.1 System overview

The diagram in Figure 3.1 provides a simplified illustration of the system's structure, 

highlighting its  key components.  The system comprises  four modules:  Simulation, 

Control,  Recognition,  and  Mapping/Localization.  These  modules  are  designed  to 

work together to accomplish the desired outcome, each playing a unique role. The 

ROS middleware supports the functionality of the system.

Figure 3.1: Functional view.
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The system comprises two phases: Map Formation and Robot's Position Computation. 

Figure 3.2 illustrates the processes within each stage.

3.1.1 Analysis of SLAM approaches

Section  2.1  from  the  previous  chapter  introduced  the  SLAM  models.  Making  a 

comparison between those models, V-SLAM, Hybridized SLAM, Semantic SLAM, 

and our system, we find the following similarities:

3.1.1.1 Comparison versus V-SLAM

When  comparing  our  approach  to  the  V-SLAM  model,  we  found  that  five 

characteristics match: data acquisition, visual odometry, state estimation, loop closure, 

Figure 3.2: Map Formation Stage and Robot's Localization Stage.
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and mapping. Our approach features an additional component, the LiDAR sensor. In 

our system, the relocalization component is triggered by the user.

3.1.1.2 Comparison versus Hybridized SLAM

After comparing our approach with the Hybridized SLAM model, we found that both 

models  comprise the three  main stages  of  data  processing,  evaluation,  and global 

mapping—however,  the  main  difference  lies  in  the  evaluation  stage.  While  the 

Hybridized SLAM model requires the estimation of the vehicle displacement from the 

tracked features, our approach manages this step by matching the landmark's database 

with  the  landmark's  detector,  thus  eliminating  the  need  for  vehicle  displacement 

estimation.

3.1.1.3 Comparison versus Semantic SLAM

In  our  comparison of  the  Semantic  SLAM model,  we identified  how our  system 

manages most of the processes in each model's stages. Our approach handles the color 

image, semantic extractor, and semantic segmentation processes during the semantic 

extraction  stage.  Our  approach  manages  feature  detection,  data  association,  and 

semantic inference in the front-end stage. In this stage, the optimization step for local 

camera BA and local object BA, as well as stationary/dynamic features, is simplified 

by our system through the use of points' processing operation. In the back-end stage, 

our  approach  covers  semantic  and  geometric  information  fusion,  loop  closure 

detection, and relocalization triggered by the user. Finally, in the semantic map stage, 

our approach handles localization and reconstruction while interaction is possible but, 

in our case, user-triggered. It is important to note that our approach does not cover 

global optimization in the back-end stage or navigation and obstacle avoidance in the 

semantic map stage.
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3.2 Simulator component

Gazebo is the simulator component's back-end and was selected for its compatibility 

with ROS and advantageous features. To integrate the system into a 3D simulation, 

fundamental  elements,  including  the  world  environment,  the  robot,  sensors,  and 

landmark objects, must be included. However, for this project, the object recognition 

component,  which  depends  on  object  geometry,  restricted  the  selection  of  object 

models  available  in  the  environment.  Each object  underwent  testing  and selection 

based on the detection confidence level to ensure accurate detection. Examples of how 

the objects  were tested are provided in  Appendix A, where it  can be observed the 

utilization of the RViz tool during the development process.

3.2.1 World simulation configuration

For  the  virtual  environment,  a  custom SDF world  file  was written.  The elements 

included in the XML-like file are the Turtlebot-Waffle Pi robot, the sensors, and the 

landmark objects. The objects were imported manually in the simulation environment. 

Still, it is essential to consider that every time a new object is introduced, a piece of 

code configuration is introduced in the SDF file. The new object configuration needs 

to be saved for future use.

3.3 Control component

The Control component provides the motion control of the robot, operated by the user. 

Figure 3.3 shows the Teleop keyboard. The keyboard provides a simple interface via 

the Ubuntu terminal that allows the user to control the speed and direction of  the 

robot's  movement  with  five  keys.  This  interface  allows  the  user  to  conveniently 

increase or decrease the speed and direct the robot's movement.
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3.4 Recognition component

The objective of the Recognition component is to perform the object recognition task. 

To this end, the YOLOv5 model was integrated into the ROS 2 package. Leveraging 

the COCO 128 dataset [21], the model could successfully recognize up to 128 classes 

of  objects.  Table  2.1 presents  the  weights  for  inference.  In  our  case,  the selected 

weights correspond to the YOLOv5x model. According to the model parameters, the 

accuracy  level  is  68.9,  slightly  higher  than  the  previous  version.  Processing  time 

analysis  reveals  that  the  CPU takes  766 ms,  while  the  GPU takes  12.1  ms.  The 

YOLOv5x model was evaluated alongside other models in a simulation environment 

and met the requirements. The NVIDIA GTX 1650 GPU was used as the hardware in 

this project.

Appendix  B  lists  the  principal  software  packages  and  their  versions  used  for the 

project development.

3.5 Localization and Mapping component

The Localization and Mapping component consists of the RGB camera and LiDAR as 

the  primary  data  input  sources,  which  provide  the  acquisition  of  data  from  the 

Figure 3.3: Teleop keyboard for operating the robot.
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environment.  Notably,  both  sensors  are  integrated  into  the  Gazebo  simulator  and 

configured as part of the SDF file.

3.5.1 Robot’s localization

This section concentrates on the localization component of the robot, with Figure 3.4 

illustrating the problem at hand. The localization problem can be divided into phases: 

Map Formation and Robot Localization. During the Map Formation phase, the robot, 

denoted  by  the  blue  circle  labeled  "Robot  pose,"  traverses  the  environment  and 

records  observations  of  objects  landmarks  represented  by  orange  triangles.  In  the 

Robot Localization phase, denoted by the gray circle labeled "New robot pose," the 

robot changes its position by an amount Δx. 

The fundamental issue in the second phase is to determine the robot's new position, 

utilizing the information gathered during the Map Formation phase.
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3.5.1.1 Triangulation

The problem of how to solve the robot's position based on visual landmarks is an 

approach that has been used and is well-defined. A practical example of how this 

approach was used is presented by H. M. Ebied and M. S. Abdel-Wahab [9]. The 

triangulation algorithm was studied by M. Betke and L. Gurvits [25]. In their work, 

they  consider  an  autonomous  agent  that  uses  a  map  to  navigate  through  an 

environment containing landmarks. Those landmarks are marked on the agent's maps. 

The autonomous agent has a tool for measuring angles, in the case of our system, the 

LiDAR sensor. As stated by M. Betke and L. Gurvits, the agent may use the following 

algorithm to identify its location in the environment:

       1) identify surrounding landmarks in the environment;

       2) find the corresponding landmarks on the map;

       3) measure the bearings of the landmarks relative to each other;

       4) compute your position efficiently.

In Figure 3.5, a graphical illustration of the triangulation problem is presented. The 

solution to this problem requires measuring the distances between the robot and each 

object and the knowledge of the position of each landmark on the recalled map.

Figure  3.5:  Triangulation  between  the  

robot and landmarks.
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As per H. M. Ebied nd M. S. Abdel-Wahab's work, we have implemented Equations 

(4), (5), and (6) in our research. These equations pertain to calculating the distance 

between the robot's position and the landmarks.

d1
2 = (x1  - xrobot)2  + (y1 - yrobot)2 (3.1)

d2
2 = (x2  - xrobot)2  + (y2 - yrobot)2 (3.2)

d3
2 = (x3  - xrobot)2  + (y3 - yrobot)2 (3.3)

The  system  determines  the  distances  between  the  robot  and  each  of  the  three 

landmarks (dn,where: n=1,2,3). These distances are known variables given that the 

data from the environment is gathered by the sensor readings and processed by the 

system.  Additionally,  the location of  each landmark is  known,  as  it  was  recorded 

during the map formation phase.  As such, the pairs  of  coordinates Objectn(xn,  yn) 

where, n = 1,2,3; corresponding to each landmark, are also established.

3.5.1.2 Solution of the triangulation system of equations

As asserted by  M. Betke and L. Gurvits, the system of nonlinear equations (3.1, 3.2,  

and 3.3) can be solved using a least squares method. The computational cost is O(n) 

or linear because it depends on the number of landmarks to be processed [9].

Considering the nonlinearity of the equations system, we found that the Levenberg-

Marquardt  algorithm  represents  a  plausible  solution  supported  by  prior  studies 

[24,26].
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4 Implementation and experimental setups

This  chapter  provides  an  in-depth  description  of  the  system  implementation  and 

delineates the various functional  elements that  constitute  the system. It  presents  a 

comprehensive overview of the experimental setups utilized in the implementation 

process and details the procedures followed to ensure their successful execution.4.1 

Simulation setup

The  simulation  setup  is  based  on the  Gazebo  software.  As  previously  detailed  in 

section 3.2.1, the robot, RGB camera, and LiDAR were defined in a ROS package. 

The objects were selected and placed (section 3.2) within the simulation environment, 

as depicted in Figure 4.1. It was essential to distribute the objects such that no object 

visually obstructed one another from the robot’s viewpoint. The simulation comprised 

20 groups, each containing three objects.
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4.2 Objects’ recognition with the YOLOv5 model

Algorithm 1 outlines the steps involved in the object recognition process. The RGB 

camera provides the input data for the process. Subsequently, the YOLOv5 model is 

utilized  tor  recognize  objects  and  generate  a  detection  list.  The  detection  list  is 

published  from  the  objects'  recognition  as  a  ROS  topic.  The  detection  list  is 

transmitted as a ROS topic, containing the indispensable information to represent the 

attributes  of  each  object,  such  as  the  class,  the  confidence  level  of  the  YOLO 

detection, and the data from the bounding box description. The bounding box is an 

array of four elements: [top left x-coordinate, top left y-coordinate, bottom right x-

coordinate, bottom right y-coordinate]. The Sensor's Fusion module then receives this 

list for further processing.

Figure 4.2 shows an inference run for four distinct object classes: fire hydrant, person, 

stop signal, and suitcase. The assigned confidence levels for each object were 0.91, 

0.93, 0.93, and 0.81, respectively.
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4.3 LiDAR points processing

Algorithm 2 has the objective of processing the LiDAR points. This process receives 

data  from the  LiDAR sensor  and  generates  a  binary  version  of  the  LiDAR data 

alongside the list of angles where objects are detected. Subsequently, the outputs of 

this process are connected to the Sensor's Fusion process. It is essential to note that, 

initially,  the LiDAR's  field of  view must  be filtered  to  correspond with  the RGB 

camera's  FoV. The selected  FoV ranges  are  limited to  0-30 and 330-360 degrees. 

Concerning the distance, detection occurs within the range of 0.5 to 15 meters.
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Figure 4.3 illustrates the data ranges the system can detect from RGB camera and 

LiDAR perspectives. Although the hardware specifications [27] of the Laser Distance 

Sensor (LDS-01) used by the Turtlebot specify a distance range of 120 mm to 3500 

mm,  the simulation environment  permits  the  use of  the  illustrated  ranges  through 

configuration.

Figure 4.3: LiDAR ranges from the top view. Distance and FoV.
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4.4 Sensors’ fusion

This system process detailed, by Algorithm 3, can be regarded as the back-end of the 

semantic  SLAM  approach,  which  fuses  semantic  and  geometric  information. 

Algorithm 3 is used to unify the input data from the RGB camera,  which already 

includes semantic information and the processed data from the LiDAR sensor. Since 

the data from both sensors are presented in distinct formats, it is crucial to establish a 

consistent data format. To illustrate the previous, Figure 4.4 depicts a scene from the 

robot's perspective.  The data from both sensors should be represented consistently 

from left to right, with the fire hydrant being the first object to appear, followed by the 

person and the suitcase. The output of this process contains a list of objects and their 

positioning  relative  to  the  robot.  The  subsequent  process  -  Objects'  Position 

Estimation, receives and processes this list.
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4.5 Objects’ position estimation

This  process  detailed  in  Algorithm  4  is  present  in  the  Map  Formation  phase.  It  

receives  inputs  from  the  Sensors’ Fusion  block  and  the  odometer,  utilizing  this 

information to estimate the position of an object in relation to the robot’s location. The 

output of this process is a set of landmark objects, in other words, a group of three 

objects with their corresponding localization information. The set of landmark objects 

is  updated  in  the  Landmarks  Database  each  time  a  new  group  of  elements  is 

discovered. A group is regarded as new if at least one object class differs from that in 

other groups or if the order of the objects is distinct from that of other groups.

Appendix C presents the resulting Landmarks Database (Map).
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4.6 Landmarks’ detection

The process elaborated in Algorithm 5 is present in the Robot's Localization phase. It 

replicates the Objects'  Position estimation process from the Map Formation phase. 

Rather  than  using  the  odometer  information,  it  uses  the  Landmarks  Database 

generated  in  the  earlier  phase  to  search  for  correspondences  within  groups  of 

landmarks. If a match is found, the system will trigger the execution of the subsequent 

process, which is the computation of the robot's position.

4.7 Computation of robot’s position

Algorithm 6, the final process in the second phase, requires the activation of a flag 

from the preceding step. Upon detecting the flag, the process accesses the register 

containing the matched group of landmarks and gets the LiDAR data from the scene 
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within  the  robot's  field  of  view.  After,  the  algorithm  employs  the  Levenberg-

Marquardt algorithm, as detailed in section 3.5.1.2, to solve the system of nonlinear 

equations  and  obtain  a  solution  for  the  coordinates  of  the  robot's  position 

Probot(xrobot,yrobot) with respect to the map.

Appendix D presents the obtained data of the computation of the robot’s position.
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5 Results

This  chapter  presents  the  outcomes  of  the  robot's  position  computation  and  its 

subsequent  analysis.  The experimental  results  obtained  are  discussed,  providing a 

comprehensive understanding of the findings.

The first step involved obtaining groups of landmarks from the environment to form a 

map, as presented in Appendix C with the Landmarks Database. A depiction of the 

arrangement of objects in the Gazebo world can be observed in Figure 5.1 from a top-

down view, and a similar scene from a bird's eye view is in Figure 4.1.

Figure  5.2  displays  the  Cartesian  plot  of  the  robot's  trajectory  in  the  Gazebo 

environment and the detected objects during the mapping phase. The graph comprises 

Figure 5.1: Top view of the Gazebo simulation.
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twenty  groups  of  objects,  each  composed  of  three  blue  crosses  that  signify  the 

location of the detected objects. The robot's path is represented by black lines, while a 

dot mark indicates the position where the scene was captured. During the mapping 

phase, sixty objects were accurately identified for each of the twenty distinct groups. 

Further details regarding the formation of these groups can be found in Appendix B.

The second step was to direct the robot to different locations to obtain a view of the 

environment and compute the robot’s position. 

    Figure 5.2 Trajectory of the robot in the Gazebo simulation – top view
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5.1 Quantitative Analysis
Following  the  computation  of  the  robot’s  position,  a  quantitative  analysis  of  the 

results was performed. The detail of the collected data for the experimental results can 

be found in Appendix D.

The success of the computation of the robot's position was determined by verifying 

that  the  error  between  the  position  of  the  robot's  ground  truth  provided  by  the 

odometric information and the position estimated by the system was less than 5% of 

the relative error in each axis, namely x, and y.

Figure 5.3 provides a  visual  representation of  the data,  with blue and red crosses 

denoting the robot’s position according to the ground truth and computed position, 

respectively. As indicated, the blue and red crosses are in close proximity, implying 

that the computed distance is close to the ground truth.
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In terms of localization error, the calculated mean error was found to be 0.34% on the 

x-axis and 0.49% on the y-axis. In order to visualize the distribution of localization 

errors, boxplots were created for both the x-axis and y-axis, presented in Figures 5.4 

and  5.5,  respectively.  Analysis  of  the  boxplot  for  the  x-axis  revealed  a  median 

absolute error of 0.01 m (1 cm.). In comparison, the median absolute error for the y-

axis was calculated to be 0.015 m (1.5 cm.).

  Figure 5.3: Robot's position – ground truth (blue) vs. computed (red)
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  Figure 5.4: Boxplot of the localization error in the x-axis.
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As part of our analysis of results, we compared our outcomes with those of previous 

studies [25, 9] that utilized the triangulation algorithm for robot position estimation. 

Specifically, we reviewed two studies that used this method, including M. Betke and 

L. Gurvits' analysis of 200 robot positions which revealed mean errors of 0.93 cm and 

10.6 cm for the x-axis and y-axis, respectively. In contrast, H. M. Ebied and M. S. 

Abdel-Wahab reported a mean error of 0.35 cm for the euclidean distance for the 

same  algorithm based  on  a  dataset  of  143  robot  positions.  Notably,  both  studies 

incorporated noisy data in their experiments.

Figure 5.5: Boxplot of the localization error in the y-axis.
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5.2 Qualitative Analysis
This  section  presents  a  qualitative  analysis  of  the  data  and observations  obtained 

during the experimentation to identify the sources of inaccuracies in the system. The 

analysis  indicates that  the primary cause of  these inaccuracies  was the challenges 

encountered in extracting measurements from the environment using the sensors.

During  the  camera  testing,  it  was  observed  that  the  object  recognition  model 

misclassified some objects due to the camera's perception of their shape. The previous 

could cause faults for the fusion algorithms, leading to errors in map formation and, 

consequently, in the robot's position estimation. However, it is worth mentioning that 

only objects correctly classified by the  recognition component were included in the 

experiment.

Regarding the LiDAR sensor, we observed that the system's perception of an object is 

influenced by two main factors: the object's geometric characteristics and the LiDAR 

sensor's detection mechanism. The object's shape and thickness between others fall 

under the first category, while the robot's position affects the number of points the 

LiDAR sensor  can detect  in  the second category.  It  should be  noted  that  LiDAR 

virtualization  used  in  the  simulation is  a  simplified  representation  of  a  physical 

LiDAR, resulting in  a  lower density  of points  provided by the sensor.  The lower 

density of points can impact the accuracy of the robot's position estimation and should 

be considered when implementing the system.
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6 Conclusion 

In conclusion,  the study presented in this thesis has successfully demonstrated the 

viability  of  image-guided  landmark-based  localization  as  a  method  for  robot 

localization. By exploring various approaches, including SLAM, and designing and 

implementing  a  comprehensive  system  that  integrates  components  such  as 

localization,  control,  recognition, and simulation, the effectiveness of the proposed 

method was verified through experimentation in a simulated environment. The study’s 

results  confirmed  that  image-guided  landmark-based  localization  is  a  viable  and 

effective means of solving the problem of robot localization. 

6.1 Future research

In  order  to  build  upon  the  work  presented  in  this  thesis,  future  research  should 

consider  several  paths  for  improvement  and  expansion.  These  paths  include 

implementing the system in a real-world environment, which would provide further 

insight  into  the  feasibility  and  effectiveness  of  image-guided  landmark-based 

localization in a more complex and dynamic setting.

In addition, future research could focus on training the model to recognize a broader 

range of representative objects, allowing the system to process different environments 

and scenarios better. The previous could also involve improving the robustness of the 

sensor fusion algorithm for LiDAR, enabling more effective recognition of objects in 

the environment.
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Furthermore, studies may explore ways to enhance the system's ability to make better 

choices based on the geometry of objects detected or segmented. The enhancement 

could lead to improved decision-making in complex and cluttered environments.

Finally, increasing the size of the dataset and conducting quantitative benchmarking 

of the system would provide a more comprehensive evaluation of its performance and 

enable  comparison  with  existing  methods.  This  insight  could  identify  areas  for 

improvement and guide further system development.
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7 Appendix

7.1 Appendix A

Test of a bicycle in RViz tool. On the left side of Figure 7.1, the view from the Gazebo 

simulator is displayed. The image in the center shows the labeled object from the 

YOLO detection, and the right screen shows the points detected in RViz.
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Test of a fire hydrant in RViz tool. On the left side of Figure 7.2, the view from the 

Gazebo simulator is displayed and the right screen shows the points detected in RViz.



55

7.2 Appendix B

List of software installed: 

• OS: Ubuntu 20.4

• ROS: ROS2 Foxy

• Conda enviroment: Miniconda3

Name Version Build Channel

cudatoolkit 11.0.3 h88f8997_10 conda-forge

libgcc-ng 11.2.0 h1234567_1  

numpy  1.22.3  py38h99721a1_2 conda-forge

python 3.8.13 h12debd9_0

pytorch 1.11.0 cpu_py38h39c826d_1

torch 1.11.0+cu102  pypi_0 pypi

torchvision 0.12.0+cu102 pypi_0 pypi

Table 7.1: List of software installed in Miniconda3
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7.3 Appendix C

Landmarks’ Database.

7.4 Appendix D

Robots’ pose computation results.
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