340 research outputs found

    Auto-Encoder Learning-Based UAV Communications for Livestock Management

    Get PDF
    The advancement in computing and telecommunication has broadened the applications of drones beyond military surveillance to other fields, such as agriculture. Livestock farming using unmanned aerial vehicle (UAV) systems requires surveillance and monitoring of animals on relatively large farmland. A reliable communication system between UAVs and the ground control station (GCS) is necessary to achieve this. This paper describes learning-based communication strategies and techniques that enable interaction and data exchange between UAVs and a GCS. We propose a deep auto-encoder UAV design framework for end-to-end communications. Simulation results show that the auto-encoder learns joint transmitter (UAV) and receiver (GCS) mapping functions for various communication strategies, such as QPSK, 8PSK, 16PSK and 16QAM, without prior knowledge

    Exploring the Technical Advances and Limits of Autonomous UAVs for Precise Agriculture in Constrained Environments

    Get PDF
    In the field of precise agriculture with autonomous unmanned aerial vehicles (UAVs), the utilization of drones holds significant potential to transform crop monitoring, management, and harvesting techniques. However, despite the numerous benefits of UAVs in smart farming, there are still several technical challenges that need to be addressed in order to render their widespread adoption possible, especially in constrained environments. This paper provides a study of the technical aspect and limitations of autonomous UAVs in precise agriculture applications for constrained environments

    Complementary Use of Ground-Based Proximal Sensing and Airborne/Spaceborne Remote Sensing Techniques in Precision Agriculture: A Systematic Review

    Get PDF
    As the global population continues to increase, projected to reach an estimated 9.7 billion people by 2050, there will be a growing demand for food production and agricultural resources. Transition toward Agriculture 4.0 is expected to enhance agricultural productivity through the integration of advanced technologies, increase resource efficiency, ensure long-term food security by applying more sustainable farming practices, and enhance resilience and climate change adaptation. By integrating technologies such as ground IoT sensing and remote sensing, via both satellite and Unmanned Aerial Vehicles (UAVs), and exploiting data fusion and data analytics, farming can make the transition to a more efficient, productive, and sustainable paradigm. The present work performs a systematic literature review (SLR), identifying the challenges associated with UAV, Satellite, and Ground Sensing in their application in agriculture, comparing them and discussing their complementary use to facilitate Precision Agriculture (PA) and transition to Agriculture 4.0

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis

    Get PDF
    Smart Farming (SF) is an emerging technology in the current agricultural landscape. The aim of Smart Farming is to provide tools for various agricultural and farming operations to improve yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from various sensors, and the introduction of information communication technologies (ICTs) in the field of farming has accelerated the implementation of disruptive technologies (DTs) such as machine learning and big data. Application of these predictive and innovative tools in agriculture is crucial for handling unprecedented conditions such as climate change and the increasing global population. In this study, we review the recent advancements in the field of Smart Farming, which include novel use cases and projects around the globe. An overview of the challenges associated with the adoption of such technologies in their respective regions is also provided. A brief analysis of the general sentiment towards Smart Farming technologies is also performed by manually annotating YouTube comments and making use of the pattern library. Preliminary findings of our study indicate that, though there are several barriers to the implementation of SF tools, further research and innovation can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment analysis also suggests that most digital users are not well-informed about such technologies

    Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0

    Get PDF
    This work was supported by the projects: "VIRTUOUS" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2019. Ref. 872181, "SUSTAINABLE" funded by the European Union's Horizon 2020 Project H2020-MSCA-RISE-2020. Ref. 101007702 and the "Project of Excellence" from Junta de Andalucia 2020. Ref. P18-H0-4700. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Timely and reliable information about crop management, production, and yield is considered of great utility by stakeholders (e.g., national and international authorities, farmers, commercial units, etc.) to ensure food safety and security. By 2050, according to Food and Agriculture Organization (FAO) estimates, around 70% more production of agricultural products will be needed to fulfil the demands of the world population. Likewise, to meet the Sustainable Development Goals (SDGs), especially the second goal of “zero hunger”, potential technologies like remote sensing (RS) need to be efficiently integrated into agriculture. The application of RS is indispensable today for a highly productive and sustainable agriculture. Therefore, the present study draws a general overview of RS technology with a special focus on the principal platforms of this technology, i.e., satellites and remotely piloted aircrafts (RPAs), and the sensors used, in relation to the 5th industrial revolution. Nevertheless, since 1957, RS technology has found applications, through the use of satellite imagery, in agriculture, which was later enriched by the incorporation of remotely piloted aircrafts (RPAs), which is further pushing the boundaries of proficiency through the upgrading of sensors capable of higher spectral, spatial, and temporal resolutions. More prominently, wireless sensor technologies (WST) have streamlined real time information acquisition and programming for respective measures. Improved algorithms and sensors can, not only add significant value to crop data acquisition, but can also devise simulations on yield, harvesting and irrigation periods, metrological data, etc., by making use of cloud computing. The RS technology generates huge sets of data that necessitate the incorporation of artificial intelligence (AI) and big data to extract useful products, thereby augmenting the adeptness and efficiency of agriculture to ensure its sustainability. These technologies have made the orientation of current research towards the estimation of plant physiological traits rather than the structural parameters possible. Futuristic approaches for benefiting from these cutting-edge technologies are discussed in this study. This study can be helpful for researchers, academics, and young students aspiring to play a role in the achievement of sustainable agriculture.European Commission 101007702 872181Junta de Andalucia P18-H0-470

    Contributions of the 5G Network with Respect to Decent Work and Economic Growth (Sustainable Development Goal 8): A Systematic Review of the Literature

    Get PDF
    Decent work and economic growth are fundamental elements for the sustainable development of a society, with Sustainable Development Goal 8 (SDG8) being one of the key objectives of the United Nations’ 2030 Agenda. The 5G network has great potential to contribute significantly to the achievement of SDG8, offering faster and more reliable connectivity, which opens up new possibilities for innovation, operational efficiency, and job creation. The present study aimed to investigate the role of 5G technologies concerning decent work and economic growth (SDG8). As part of the method, 265 articles extracted from main databases such as Scopus, IEEExplore, and ScienceDirect were analyzed using the PRISMA methodology, resulting in 74 relevant articles after applying the inclusion and exclusion criteria. As a result, a greater contribution to the use of the 5G network was identified in sectors such as manufacturing, health, and transportation, generating greater economic growth and job creation. It was also found that the technological applications with the greatest contributions are “Internet of Things” and “Artificial intelligence”. Finally, it was concluded that the results of this review are useful for future research on technologies that support 5G networks, contributing to economic growth and equitable and sustainable decent work in a wide range of sectors and rural areas

    Smart Connected Farms and Networked Farmers to Tackle Climate Challenges Impacting Agricultural Production

    Full text link
    To meet the grand challenges of agricultural production including climate change impacts on crop production, a tight integration of social science, technology and agriculture experts including farmers are needed. There are rapid advances in information and communication technology, precision agriculture and data analytics, which are creating a fertile field for the creation of smart connected farms (SCF) and networked farmers. A network and coordinated farmer network provides unique advantages to farmers to enhance farm production and profitability, while tackling adverse climate events. The aim of this article is to provide a comprehensive overview of the state of the art in SCF including the advances in engineering, computer sciences, data sciences, social sciences and economics including data privacy, sharing and technology adoption
    • …
    corecore