196,472 research outputs found

    Transformer-based Multi-Instance Learning for Weakly Supervised Object Detection

    Full text link
    Weakly Supervised Object Detection (WSOD) enables the training of object detection models using only image-level annotations. State-of-the-art WSOD detectors commonly rely on multi-instance learning (MIL) as the backbone of their detectors and assume that the bounding box proposals of an image are independent of each other. However, since such approaches only utilize the highest score proposal and discard the potentially useful information from other proposals, their independent MIL backbone often limits models to salient parts of an object or causes them to detect only one object per class. To solve the above problems, we propose a novel backbone for WSOD based on our tailored Vision Transformer named Weakly Supervised Transformer Detection Network (WSTDN). Our algorithm is not only the first to demonstrate that self-attention modules that consider inter-instance relationships are effective backbones for WSOD, but also we introduce a novel bounding box mining method (BBM) integrated with a memory transfer refinement (MTR) procedure to utilize the instance dependencies for facilitating instance refinements. Experimental results on PASCAL VOC2007 and VOC2012 benchmarks demonstrate the effectiveness of our proposed WSTDN and modified instance refinement modules

    Actor-Critic Policy Learning in Cooperative Planning

    Get PDF
    In this paper, we introduce a method for learning and adapting cooperative control strategies in real-time stochastic domains. Our framework is an instance of the intelligent cooperative control architecture (iCCA)[superscript 1]. The agent starts by following the "safe" plan calculated by the planning module and incrementally adapting its policy to maximize the cumulative rewards. Actor-critic and consensus-based bundle algorithm (CBBA) were employed as the building blocks of the iCCA framework. We demonstrate the performance of our approach by simulating limited fuel unmanned aerial vehicles aiming for stochastic targets. In one experiment where the optimal solution can be calculated, the integrated framework boosted the optimality of the solution by an average of %10, when compared to running each of the modules individually, while keeping the computational load within the requirements for real-time implementation.Boeing Scientific Research LaboratoriesUnited States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database

    Data mining based cyber-attack detection

    Get PDF

    Object Tracking with Multiple Instance Learning and Gaussian Mixture Model

    Get PDF
    Recently, Multiple Instance Learning (MIL) technique has been introduced for object tracking\linebreak applications, which has shown its good performance to handle drifting problem. While some instances in positive bags not only contain objects, but also contain the background, it is not reliable to simply assume that each feature of instances in positive bags obeys a single Gaussian distribution. In this paper, a tracker based on online multiple instance boosting has been developed, which employs Gaussian Mixture Model (GMM) and single Gaussian distribution respectively to model features of instances in positive and negative bags. The differences between samples and the model are integrated into the process of updating the parameters for GMM. With the Haar-like features extracted from the bags, a set of weak classifiers are trained to construct a strong classifier, which is used to track the object location at a new frame. And the classifier can be updated online frame by frame. Experimental results have shown that our tracker is more stable and efficient when dealing with the illumination, rotation, pose and appearance changes
    • …
    corecore