5 research outputs found

    Developing a method for elaboration the scenarios related with sustainable products lifecycle

    Full text link
    This article aims at presenting our objective that is to use DfD rules earlier during the design process. Indeed, during the conceptual design phase, designers don't have simple qualitative tools or methods to evaluate their products. There are guidelines that are very useful in a first approach to give some objectives, but there is no quantitative indicators associated to these rules to consider the disassembly aspects when the first choices are realised for the product. So we will present that to use DfD rules during the conceptual design phase, we first have: ?to identify which kind of rules can be applied when designers only have a functional representation of their product. ?to create the necessary indicators to evaluate these rules depending on designers choices. We think that this approach is usable for many DfX rules either if we only consider in this paper DfD rules.Comment: 10 Pages; 1st International Engineering Sciences Conference 2008, Aleppo : Syrian Arab Republic (2008

    Function-Based Computer Aided Conceptual Design Support Tool

    Get PDF
    Conceptual design is considered as the most critical and important phase of design process. It is the stage where product’s fundamental features are determined, large proportion of the lifecycle cost of the product is committed, and other major decisions are made, which have significant impact on the downstream design and related manufacturing processes. It is a knowledge intensive process where diverse knowledge and several years of experience are put together to design quality and cost effective products. Unfortunately, computer support systems for this phase are lagging behind compared to the currently available commercial computer aided design (CAD) tools for the later stage of design to reduce the designers workload and product development time. The overall goal of this research is to provide designers with computational tool that support conceptual design process. To achieve this goal a methodology that integrates systematic design approach with knowledge-based system is proposed in this thesis. Accordingly, a framework of computer based computational tool known as conceptual design support tool (CDST) is developed using the proposed methodology. The tool assists designers in performing functional modeling by providing standard vocabularies of functions in the form of function library, generate concepts stored in the database from previous designs, display the generated concepts on the morphology chart, combine the concepts and evaluate the concepts variants. Concepts from subsea processing equipment design have been collected and saved in the database. The tool also accepts new concepts from the designer through its knowledge acquisition system to be saved in the database for future use. In doing so, it is possible to integrate human creativity with data handling capabilities of computers to perform conceptual design more efficiently than solely manual design. The tool can also be used as a knowledge management system to preserve expert’s knowledge and train novice designers. The applicability of the proposed methodology and developed tool is illustrated and validated by using a case study and validation test conducted by independent evaluators

    Function-Based Computer Aided Conceptual Design Support Tool

    Get PDF
    Conceptual design is considered as the most critical and important phase of design process. It is the stage where product’s fundamental features are determined, large proportion of the lifecycle cost of the product is committed, and other major decisions are made, which have significant impact on the downstream design and related manufacturing processes. It is a knowledge intensive process where diverse knowledge and several years of experience are put together to design quality and cost effective products. Unfortunately, computer support systems for this phase are lagging behind compared to the currently available commercial computer aided design (CAD) tools for the later stage of design to reduce the designers workload and product development time. The overall goal of this research is to provide designers with computational tool that support conceptual design process. To achieve this goal a methodology that integrates systematic design approach with knowledge-based system is proposed in this thesis. Accordingly, a framework of computer based computational tool known as conceptual design support tool (CDST) is developed using the proposed methodology. The tool assists designers in performing functional modeling by providing standard vocabularies of functions in the form of function library, generate concepts stored in the database from previous designs, display the generated concepts on the morphology chart, combine the concepts and evaluate the concepts variants. Concepts from subsea processing equipment design have been collected and saved in the database. The tool also accepts new concepts from the designer through its knowledge acquisition system to be saved in the database for future use. In doing so, it is possible to integrate human creativity with data handling capabilities of computers to perform conceptual design more efficiently than solely manual design. The tool can also be used as a knowledge management system to preserve expert’s knowledge and train novice designers. The applicability of the proposed methodology and developed tool is illustrated and validated by using a case study and validation test conducted by independent evaluators

    Intégration de règles "DfE" (Design for Environment) pour la conception de produits, process et cycles de vie propres

    Get PDF
    Afin d aider les concepteurs à considérer l environnement dans leur projet de conception de produit, tout en minimisant le temps consacré à cette démarche, une évaluation environnementale simplifiée utilisable dès la phase de conception préliminaire a été définie. La démarche proposée vise à intégrer les règles Design for Environment (DfE) au plus tôt dans la conception des produits, en proposant une méthode d évaluation qui traduit ces règles DfE en indicateurs. Pour mener à bien ce travail de thèse, il nous a fallu construire une base des données des Règles DfE, établir une méthode de choix des règles en fonctions du contexte du projet de conception, établir les règles de calcul des indicateurs liés aux règles DfE et mettre en place des représentations adaptées pour l interprétation des résultats lors de projets de conception. L objectif ici est de guider le concepteur au plus tôt vers un bon compromis, par des estimations simples. Cette approche est nécessaire afin d éviter des modifications significatives à la fin des études détaillées et ainsi de nombreuses boucles essais/erreurs en conception. Une étude de cas permet d illustrer la démarche proposée.To help designers to consider the environmental issues for their product design project (green concepts and other sustainable and environmental strategies) and to minimize the time spent with this approach, a simplified environmental assessment usable during the preliminary design stage has been developed.The proposed approach aims to integrate the "Design for Environment" rules (DfE rules) early in the product design while proposing a method that translates these rules into DfE indicators (quantitative value).To carry out this work, we had to: firstly build a database of DfE rules, secondly establish a method to choose these rules in the context of the design project objectives, thirdly establish calculation formula for the indicatorsSAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    A Design Fostering System Based on Sustainable Knowledge for Application in the "Idea Generation Phase"

    No full text
    [[abstract]]This study establishes a design fostering system for a chair using sustainable knowledge to assist the designer in the idea generation phase of the design process. Most research papers point out the importance of sustainability in the product design or service process, as well as how to maintain the three-way balance between the environment, society, and the economy through design techniques. In addition, more and more application, tools, and methods are targeting sustainability assessment of product design, such as product life cycles (PLC), life cycle assessments (LCA), ISO14001, and ecological carbon footprints, etc. These tools or methods mostly assess whether or not a product is sustainable through post-production. After these tools or methods getting more attention, people began proposing research results to regard how sustainable knowledge can assist the designer in the initial design stages. Furthermore, some of these researches point out that with the help of sustainable knowledge in the idea generation phase, designers are able to understand the problems that may occur of the product life cycle at the end in the early phase of design, thereby connecting the knowledge of beginning and end of the product life cycle and achieving the goal of sustainability. The methodology of this research divided into three stages. First, review relative research, including recent research on important sustainability topics as well as product sustainability, some applications in design thinking, changes in the design process brought about by design calculations, as well as fundamental knowledge regarding chair design. Also in the first stage, a synchronous 3D design concept diagram and a sustainable design flow for design assessment are proposed, assisting designers with concept development. Second , design fostering system will proposal, during which aesthetic and human-factor knowledge, which are commonly seen in chair design, are added into the knowledge fostering process in order to assist in the design process. Based on the requirements of the system’s operations, Rhino3D + Grasshopper are chosen as the digital tools for carrying out this study. A comparison experiment is first designed to make subjects engage in design creation based on different types of knowledge; problems that occur during the experiment are observed, recorded, and modification. Third, general experiments are conducted based on the revised system, including comparisons between different knowledge fostering processes as well as comparisons between different design information feedback methods.   The main results of this study shows that the most important considerations during chair design are the size and angles of the chair. To increase the degree of sustainability of the product, material selection and production methods should be further thought out. The consideration of sustainability will not only affect the form of the product, but also the methods that designers use to design different chairs. When designers must simultaneously take sustainability knowledge, human-factor knowledge, and aesthetic knowledge into consideration, human-factor knowledge is often given the most weight, and aesthetic considerations are often sacrificed in order to achieve sustainability. Designers using information feedback methods that include assessment information interfaces can not only complete the design faster, but can also reduce the amount of time required for contemplating product details, allowing them to focus more of their energy on sustainability-related design issues. 目錄 誌謝 II 中文摘要 III Abstract V 目錄 VII 表目錄 XI 圖目錄 XII 第一章、緒論 1 第一節、研究背景與動機 1 第二節、研究問題與目標 2 第三節、研究流程 3 第四節、論文架構 3 第二章、文獻回顧 5 第一節、永續發展 5 一、永續發展面向 6 二、永續設計 8 三、小結 13 第二節、設計思考 13 一、視覺思考與心象 14 二、設計過程 15 三、問題解決策略 19 四、數位工具對於設計思考的影響 22 第三節、設計運算 23 一、衍生式設計 24 二、以規則為基礎的設計法則 25 三、小結 27 第四節、椅子設計基礎知識 27 第五節、設計問題與目標 28 第三章、知識輔助概念發展實驗 35 第一節、知識輔助設計思考 35 一、產品設計知識 35 二、永續發展評估知識 37 三、知識輔助概念發展架構 38 第二節、實驗方法 41 第三節、先前實驗 41 一、實驗前提 41 二、設計題目的擬訂 42 三、實驗對象與分組 43 四、實驗媒材 43 五、系統操作 45 六、實驗限制 49 七、先前實驗進行方式 49 八、先前實驗結果 50 九、修正方向 53 第四節、實驗設定 57 第四章、研究結果 59 第一節、知識差異比較 59 一、時間比較 59 二、參數重要程度比較 60 三、美學知識運用比較 63 四、人因知識運用差異 65 五、永續運用差異 65 第二節、介面差異比較 66 一、時間比較 66 二、參數重要程度比較 67 三、美學評價比較 67 四、人因評價比較 68 第三節、造形差異與製造評估差異比較 69 第四節、小結 71 第五章、結論 72 第一節、研究結論與貢獻 72 第二節、應用 73 第三節、後續研究與建議 74 中文文獻 75 英文文獻 78 附錄 85 附錄一 知識輔助資訊 85 附錄二 實驗問卷 89 附錄三 實驗結果 91 附錄四 LEE, P.S. & SHIH, S.C. (2014) A COMPARISON STUDY ON BIM AND UNCON-STRUCTED KNOWLEDGE AT IDEA GENERATION PHASE, PROCEEDINGS OF THE EUROPEAN CONFERENCE OF PRODUCT AND PROCESS MODELING 2014 (ECPPM 2014), IN PRINTED 99   表目錄 表2-1:永續發展設計評估模型(Howarth & Hadfield, 2006) 12 表2-2:可口可樂品牌意象建構造形文法(Ang et al., 2006) 26 表2-3:椅子設計之通用原則(茅仲宇,2004) 27 表3-1:美學原則(Pham, 1999) 35 表3-2:椅子使用特質的屬性特徵(茅仲宇,2004) 36 表3-3:椅子造形原件與人因關係(高立杰,2009;羅崢瑋,2012) 37 表3-4:永續原則與評估方式(本研究整理) 38 表3-5:參數式工具分析(Loomis, 2010) 44 表3-6:先前實驗結果 51 表3-7:受測者實驗分組 58 表4-1:不同種類椅子平均完成時間 59 表4-2:時間比較 60 表4-3:參數滑軌分類 61 表4-4:不同輔助介面下椅子完成時間比較 66   圖目錄 圖2-1:文獻回顧方式 5 圖2-2:永續發展架構(蕭代基,1998) 7 圖2-3:永續發展金字塔模型( Meadows, 1998) 8 圖2-4:設計師典型的利害關係人(Howarth & Hadfield, 2006) 9 圖2-5:產品回收再生之永續性評估系統模式(杜瑞澤與陳振甫,1998) 10 圖2-6:設計黑盒子 (Jones, 1992) 14 圖2-7:視覺思考(Mckim, 1980) 15 圖2-8:[看-動-看]模型(Schön & Wiggins, 1992) 16 圖2-9:Asimow的設計循環模型(Asimow, 1962) 16 圖2-10:Archer的設計過程模型(Archer,1965) 17 圖2-11:螺旋迴圈循環(Zeisel,1981) 18 圖2-12:資訊處理系統(Newell & Simon, 1972) 19 圖2-13:決策樹(Rowe, 1991) 20 圖2-14: TRIZ問題解決過程(Trotta, 2011) 20 圖2-15:問題解決的循環模式(Sternberg, 1996) 21 圖2-16: FBS模型(Gero, 1990) 22 圖2-17:造形文法示意圖(Stiny, 1976) 25 圖2-18:造形漸變(Hui & Li, 1998) 26 圖2-19:概念設計定義(Zuo & Director, 2000) 31 圖2-20:概念設計流程(Jensen & Tonies, 1979) 33 圖2-21:概念生成與評估同步式設計流程 34 圖3 1:知識輔助設計模型 40 圖3-2:視覺元件 44 圖3-3:材料選擇 45 圖3-4:椅腳與相關參數調整 46 圖3-5:椅座參數調整 47 圖3-6:椅背調整(A:無椅背 B:有椅背 C:參數調整) 48 圖3-7:雷射切割線稿 48 圖3-8:先前實驗進行方式 49 圖3-9:椅背支架設計 52 圖3-10:椅背樣式(A:一般椅背 B:挖孔椅背 C:多椅背 D:參數調整) 54 圖3-11:腳踏架調整 54 圖3-12:椅背支架連動方式(左:扶手連動 右:後椅腳連動) 55 圖3-13:雷射切割線稿 56 圖3-14:評估資訊輔助面板 56 圖3-15:操作介面-資訊回饋差異(A:PIF B:AIF) 57 圖3-16:實驗進行方式 58 圖4-1:參數重要度評價長條圖 62 圖4-2:知識運用程度 63 圖4-3:不同美學原則運用次數 64 圖4-4:椅子的美學原則使用次數 64 圖4-5:椅子人因使用次數 65 圖4-6:永續面向運用程度差異 66 圖4-7:介面對參數重要程度比較 67 圖4-8:不同設計介面對椅子美學運用的影響 68 圖4-9:不同資訊回饋介面對人因之影響 68 圖4-10:造形差異比較 69 圖4-11:製造評估比較 70 圖5-1:設計方案大量衍生 74 中文文獻 (1)何秀煌(1981)。「自由」的意義。台北:東大。 (2)吳佳欣(2010)。探索永續設計中說服力的影響脈絡(碩士論文)。國立交通大學應用藝術研究所,新竹縣。 (3)李公哲(1999)。聯合國二十一世紀議程與永續發展。永續發展專刊,46(1),11。 (4)李惠琳(2001)。使用電腦及傳統媒材在構想發展過程上的比較(碩士論文)。國立交通大學建築研究所,新竹縣。 (5)杜瑞澤(1995)。綠色環保設計資源回收系統之研究。工業設計,(92),10-18。 (6)杜瑞澤、吳志南(2005)。消費者環保意識態度與綠色消費行為對綠色產品設計之影響—以家具為例。設計學報 (Journal of Design),10(3)。 (7)杜瑞澤、林家任(2004)。ISO14000 環境管理系統標準觀點探討綠色產品永續設計。設計學報 (Journal of Design),9(2)。 (8)杜瑞澤、陳振甫(1998)。綠色生命週期設計中產品回收再生特性之永續性評估模式研究。設計學報 (Journal of Design),3(1)。 (9)杜瑞澤、謝智和(1999)。筆記型電腦綠色組裝與拆解設計之檢核研究。設計學報 (Journal of Design),4(1)。 (10)周晏純(2010)。產品造形特徵參數化研究及其造形衍生系統之建構-以摩卡壺設計為例(碩士論文)。國立雲林科技大學工業設計系,雲林縣。 (11)林峰田(2004)。CAAD的理論發展。from http://www.bp.ntu.edu.tw/WebUsers/-ftlin/course/CAAD/cad.htm (12)胡惠君、李王寶(2008)。形的設計運算方法研究。 from http://www.cs.npue.edu.tw/jour/pdf/vol4isu1/08.pdf (13)茅仲宇(2004)。以椅子為例探討承擔特質於產品設計之應用 (碩士論文)。 國立台灣科技大學設計研究所,台北市。 (14)唐玄輝、謝易成、蔡艾靜 (2009) 。透過鏈結表記探討數位與傳統媒材對於概念演化發展數量上的影響。2009明志科技大學技術與教學研討會,明志科技大學。 (15)高立杰(2009)。 高齡者輔助起身坐下座椅設計研究(碩士論文)。臺北科技大學創新設計研究所,台北市。 (16)張倚鎮(2012)。「刺激時序」於合作式設計中「創意發展」影響之研究 (碩士論文) 。明道大學設計學院,彰化縣。 (17)許育齡、陳聖智、許明潔(2011)。促發數位設計學生想像的心理因素及其影響。教學科技與媒體,(98),16-31。 (18)陳政祺(1999)。專家設計師搜尋策略之設計思考研究(碩士論文)。國立交通大學應用藝術所,新竹縣。 (19)曾仁義(2013)。感官經驗之綠色設計創作(碩士論文),國立台灣師範大學,台北市。 (20)曾漢壽(1992)。以環保為觀點之包裝設計。產品設計與包裝,(54),52。 (21)游勝博(2012)。自然模式:參數式設計漁產品造形創作之應用(碩士論文)。國立交通大學應用藝術研究所,新竹縣。 (22)游萬來、趙鴻哲(1997)。以文法概念為基礎的電腦輔助造形設計模式研究一以咖啡杯設計為例。設計學報 (Journal of Design),2(1)。 (23)楊日昌(2000)。永續發展的內涵與對台灣的意義。政策月刊,pp. 17-22。 (24)劉育東、李楚卿(2009)。新構築。台北市:田園城市。 (25)蕭代基(1998)。永續發展的意義與政策方向。經濟前瞻,(56),44-49。 (26)洪珮倩(2010)。慣用媒材對設計思考的影響-傳統媒材與數位媒材(碩士論文)。交通大學建築研究所,新竹縣。 (27)謝茜羽(2011)。美學原則影響使用者愉悦情感之探討:椅子造型線條的一致性.(碩士論文)。長庚大學,桃園縣。 (28)簡聖芬(1999)。衍生式設計輔助系統:現況與未來發展。 from http:// www.ad.ntust.edu.tw/grad/code/nctu_talk/abstract.html (29)羅崢瑋(2012)。從人因感測到快速客製化:以原型椅為例(碩士論文)。國立交通大學建築研究所,新竹縣。   英文文獻 (1)Agarwal, M. (1998). A blend of different tastes: the language of colfeemakers. Environment and Planning B: Planning and Design, 25, 205-226. (2)Alʹtšuller, G. S. (1999). The innovation algorithm: TRIZ, systematic innovation and technical creativity. Technical Innovation Center, Inc. (3)Ang, M. C., Chau, H. H., McKay, A., & Pennington, A. d. (2006). Combining evolutionary algorithms and shape grammars to generate branded product design Design Computing and Cognition’06 (pp. pp. 521-539). Netherlands: Springer (4)Archer, L., B. (1965). Systematic Methods for Designers. London: Council of Industrial Design. (5)Ashby, W. R. (1952). Design for a brain. London: Chapman & Hall. (6)Asimow, M. (1962). Introduction to Design. New Jersey: Prentice-Hall. (7)Azhar, S., Carlton, W. A., Olsen, D., & Ahmad, I. (2011). Building information modeling for sustainable design and LEED® rating analysis. Automation in construction, 20(2), 217-224. (8)Berke, P., & Manta, M. (1999). Planning for sustainable development: measuring progress in plans. Lincoln Institute of Land Policy Massachusetts. (9)Bret, H. S. (1996). Accessing Ecodesign, Materials & Processes. Innovation Spring, 36-38. (10)Brown, T. (2009). Change by design: How design thinking transforms organi-zations and inspires innovation. HarperCollins. (11)Brundtland, G. H. (1987). World commission on environment and development. Our common future, 8-9. (12)Carolien, H., & Han, B. (1996). Ecodesign: a promising approach. Delft University of Technology, 16-21. (13)Cross, N. (1999). Natural intelligence in design. Design studies, 20(1), 25-39. (14)Cross, N., & Cross, N. (2000). Engineering design methods: strategies for product design (Vol. 58): Wiley Chichester. (15)Daly, H. E. (1973). Toward a Steady-state Economy. San Francisco: W. H. Freeman and Company. (16)Dorst, K. (1996). The design problem and its structure. Analysing design activity, 17-34. (17)Eysenck, M. W., & Keane, M. T. (2005). Cognitive psychology: A student's handbook: Taylor & Francis. (18)Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), 26. (19)Gu, N., Singh, V., London, K., Brankovic, L., & Taylor, C. (2008). Adopting building information modeling (BIM) as collaboration platform in the design industry. Paper presented at the CAADRIA 2008: Beyond Computer-Aided Design: Proceedings of the 13th Conference on Computer Aided Architectural Design Research in Asia. (20)Hadfield, M., & Howarth, G. (2002). Sustainable development training and educational challenges for business and universities. Engineering education in sustainable design, 174-182. (21)Hekkert, P., & Wieringen, P. (1990). Complexity and prototypicality as deter-minants of the appraisal of cubist paintings. British Journal of Psychology, 81(4), 483-495. (22)Howarth, G., & Hadfield, M. (2006). A sustainable product design model. Materials & design, 27(10), 1128-1133. (23)Hughes, A. C., & Hughes, T. P. (2000). Systems, Experts and Computers: The Systems Approach in Management and Engineering, World War II and After: The MIT Press. (24)Hui, K. C., & Li, Y. (1998). A feature-based shape blending technique for industrial design. Computer-aided design, 30(10), 823-834. (25)Jensen, R. W., & Tonies, C. C. (1979). Software Engineering Education: A Constructive Criticism. Software Engineering, 553-567. (26)Jones, J. C. (1969). The state of the art in design methods. Design methods in architecture. London: AApapers. (27)Jones, J. C. (1984). Essays in design. Wiley Chichester etc. (28)Jones, J. C. (1992). Design methods. Wiley. com. (29)Kosslyn, S. M. (1996). Image and brain: The resolution of the imagery debate. The MIT Press. (30)Kumar, M., & Garg, N. (2010). Aesthetic principles and cognitive emotion appraisals: How much of the beauty lies in the eye of the beholder?. Journal of Consumer Psychology, 20(4), 485-494. (31)Lilley, D. (2009). Design for sustainable behaviour: strategies and perceptions. Design studies, 30(6), 704-720. (32)Lin, C. Y. (1999). The representing capacity of physical models and digital models. Paper presented at the Proceedings of the CAADRIA. (33)Liu, Y. T. (1995). Some phenomena of seeing shapes in design. Design studies, 16(3), 367-385. (34)Loomis, M. (2010). About Generative Design platforms by Mark Loomis. from http://107.170.116.164/deviants/about-generative-design-platforms-by-mark-loomis/ (35)Macdonald, A. S. (1998). Developing a qualitative sense. Human factors in consumer products, 175-191. (36)Mandelbrot, B. B. (1983). The fractal geometry of nature. Macmillan. (37)McDonaghPhilp, D., & Lebbon, C. (2000). The emotional domain in product design. The Design Journal, 3(1), 31-43. (38)McKim, R. (1980). Thinking Visually - A Strategy Manual for Problem Solving. Dale Seymour. (39)Meadows, D. H. (1998). Indicators and information systems for sustainable development. Sustainability Institute Hartland. (40)Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81. (41)Mitchell, W. J. (1977). Computer-aided architectural design. John Wiley & Sons, Inc. (42)Mitchell, W. J. (1995). 建築的設計思考 (劉育東, Trans.). 台北市:胡氏圖書 DesignerBookstore. com. (43)Nasr, N., & Thurston, M. (2006). Remanufacturing: A key enabler to sustainable product systems. Rochester Institute of Technology. (44)Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 14): Prentice-Hall Englewood Cliffs, NJ. (45)Papanek, V., & Fuller, R. B. (1972). Design for the real world. Thames and Hudson : London. (46)Pauw, d. I., Kandachar, P., Karana, E., Peck, D., & Wever, R. (2010). Nature inspired design: Strategies towards sustainability. Paper presented at the Proceed-ings of the 2010 ERSCP-EMSU conference Delft, The Netherlands. (47)Pham, B. (1999). Design for aesthetics: interactions of design variables and aesthetic properties. Paper presented at the Electronic Imaging'99. (48)Ramachandran, V. S., & Hirstein, W. (1999). The science of art: A neurological theory of aesthetic experience. Journal of consciousness Studies, 6(6-7), 6-7. (49)Robbins, E., & Cullinan, E. (1994). Why architects draw. MA: MIT press. (50)Robèrt, K.-H., Schmidt-Bleek, B., Aloisi de Larderel, J., Basile, G., Jansen, J. L., Kuehr, R., Wackernagel, M. (2002). Strategic sustainable development—selection, design and synergies of applied tools. Journal of Cleaner production, 10(3), 197-214. (51)Rowe, P. G. (1991). Design Thinking. MA: The MIT Press. (52)Schön, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126): Basic books. (53)Schön, D. A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing. Design studies, 13(2), 135-156. (54)Schön, D., & Bennett, J. (1996). Reflective conversation with materials. Paper presented at the Bringing design to software. (55)Schwab, A. K., & Brower, D. J. (1997). Sustainable Development: Implementation at the Local Level. Land Use Law & Zoning Digest, 49(4), 3-7. (56)Simon, H. A., & Newell, A. (1962). Computer simulation of human thinking and problem solving. Monographs of the Society for Research in Child Development, 27(2), 137-150. (57)Sternberg, R. J. (1996). Cognitive psychology. Harcourt Brace College Publishers (Fort Worth). (58)Stiny, G. (1976). Two exercises in formal composition. Environment and Planning B, 3(2), 187-210. (59)Stiny, G., & Mitchell, W. J. (1978). The palladian grammar. Environment and Planning B, 5(1), 5-18. (60)Sudarsan, R., Fenves, S. J., Sriram, R. D., & Wang, F. (2005). A product information modeling framework for product lifecycle management. Computer-aided design, 37(13), 1399-1411. (61)Thomas, N. J. (1999). Are theories of imagery theories of imagination?: An active perception approach to conscious mental content. Cognitive science, 23(2), 207-245. (62)Trotta, M. G. (2011). Bio-inspired Design Methodology. International Journal of Information Science, 1(1), 1-11. (63)Utterback, J. M. (2006). Design-inspired innovation. London: world Scientific. (64)Vinod, G. (1995). Sketches of thought. MA: The MIT Press. (65)Zeisel, J. (1981). Inquiry by design:Tools for environment-behavior research. Monterey, CA: Brooks/Cole. (66)Zevi, B. (1981). Gruppo 7: the rise and fall of Italian rationalism. Architectural Design, 51(1), 41-63. (67)Zuo, J., & Director, S. W. (2000). An integrated design environment for early stage conceptual design. Paper presented at the Design, Automation and Test in Europe Conference and Exhibition 2000
    corecore