17,403 research outputs found

    Content-based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events

    Get PDF
    As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated us

    Survey on Vision-based Path Prediction

    Full text link
    Path prediction is a fundamental task for estimating how pedestrians or vehicles are going to move in a scene. Because path prediction as a task of computer vision uses video as input, various information used for prediction, such as the environment surrounding the target and the internal state of the target, need to be estimated from the video in addition to predicting paths. Many prediction approaches that include understanding the environment and the internal state have been proposed. In this survey, we systematically summarize methods of path prediction that take video as input and and extract features from the video. Moreover, we introduce datasets used to evaluate path prediction methods quantitatively.Comment: DAPI 201

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation

    MUST-CNN: A Multilayer Shift-and-Stitch Deep Convolutional Architecture for Sequence-based Protein Structure Prediction

    Full text link
    Predicting protein properties such as solvent accessibility and secondary structure from its primary amino acid sequence is an important task in bioinformatics. Recently, a few deep learning models have surpassed the traditional window based multilayer perceptron. Taking inspiration from the image classification domain we propose a deep convolutional neural network architecture, MUST-CNN, to predict protein properties. This architecture uses a novel multilayer shift-and-stitch (MUST) technique to generate fully dense per-position predictions on protein sequences. Our model is significantly simpler than the state-of-the-art, yet achieves better results. By combining MUST and the efficient convolution operation, we can consider far more parameters while retaining very fast prediction speeds. We beat the state-of-the-art performance on two large protein property prediction datasets.Comment: 8 pages ; 3 figures ; deep learning based sequence-sequence prediction. in AAAI 201
    • …
    corecore