7,454 research outputs found

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Why my photos look sideways or upside down? Detecting Canonical Orientation of Images using Convolutional Neural Networks

    Full text link
    Image orientation detection requires high-level scene understanding. Humans use object recognition and contextual scene information to correctly orient images. In literature, the problem of image orientation detection is mostly confronted by using low-level vision features, while some approaches incorporate few easily detectable semantic cues to gain minor improvements. The vast amount of semantic content in images makes orientation detection challenging, and therefore there is a large semantic gap between existing methods and human behavior. Also, existing methods in literature report highly discrepant detection rates, which is mainly due to large differences in datasets and limited variety of test images used for evaluation. In this work, for the first time, we leverage the power of deep learning and adapt pre-trained convolutional neural networks using largest training dataset to-date for the image orientation detection task. An extensive evaluation of our model on different public datasets shows that it remarkably generalizes to correctly orient a large set of unconstrained images; it also significantly outperforms the state-of-the-art and achieves accuracy very close to that of humans

    Pre-classification for automatic image orientation

    Get PDF
    In this paper, we propose a novel method for automatic orientation of digital images. The approach is based on exploiting the properties of local statistics of natural scenes. In this way, we address some of the difficulties encountered in previous works in this area. The main contribution of this paper is to introduce a pre-classification step into carefully defined categories in order to simplify subsequent orientation detection. The proposed algorithm was tested on 9068 images and compared to existing state of the art in the area. Results show a significant improvement over previous work

    Automating the construction of scene classifiers for content-based video retrieval

    Get PDF
    This paper introduces a real time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification consists of a two stage procedure. First, small image fragments called patches are classified. Second, frequency vectors of these patch classifications are fed into a second classifier for global scene classification (e.g., city, portraits, or countryside). The first stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an alternative to letting an image processing expert determine features a priori. We present results for experiments on a variety of patch and image classes. The scene classifier has been used successfully within television archives and for Internet porn filtering

    Ridgelet-based signature for natural image classification

    Get PDF
    This paper presents an approach to grouping natural scenes into (semantically) meaningful categories. The proposed approach exploits the statistics of natural scenes to define relevant image categories. A ridgelet-based signature is used to represent images. This signature is used by a support vector classifier that is well designed to support high dimensional features, resulting in an effective recognition system. As an illustration of the potential of the approach several experiments of binary classifications (e.g. city/landscape or indoor/outdoor) are conducted on databases of natural scenes

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images

    SVM Based Indoor/Mixed/Outdoor Classification for Digital Photo Annotation in a Ubiquitous Computing Environment

    Get PDF
    This paper extends our previous framework for digital photo annotation by adding noble approach of indoor/mixed/outdoor image classification. We propose the best feature vectors for a support vector machine based indoor/mixed/ outdoor image classification. While previous research classifies photographs into indoor and outdoor, this study extends into three types, including indoor, mixed, and outdoor classes. This three-class method improves the performance of outdoor classification. This classification scheme showed 5--10% higher performance than previous research. This method is one of the components for digital image annotation. A digital camera or an annotation server connected to a ubiquitous computing network can automatically annotate captured photos using the proposed method

    An examination of automatic video retrieval technology on access to the contents of an historical video archive

    Get PDF
    Purpose – This paper aims to provide an initial understanding of the constraints that historical video collections pose to video retrieval technology and the potential that online access offers to both archive and users. Design/methodology/approach – A small and unique collection of videos on customs and folklore was used as a case study. Multiple methods were employed to investigate the effectiveness of technology and the modality of user access. Automatic keyframe extraction was tested on the visual content while the audio stream was used for automatic classification of speech and music clips. The user access (search vs browse) was assessed in a controlled user evaluation. A focus group and a survey provided insight on the actual use of the analogue archive. The results of these multiple studies were then compared and integrated (triangulation). Findings – The amateur material challenged automatic techniques for video and audio indexing, thus suggesting that the technology must be tested against the material before deciding on a digitisation strategy. Two user interaction modalities, browsing vs searching, were tested in a user evaluation. Results show users preferred searching, but browsing becomes essential when the search engine fails in matching query and indexed words. Browsing was also valued for serendipitous discovery; however the organisation of the archive was judged cryptic and therefore of limited use. This indicates that the categorisation of an online archive should be thought of in terms of users who might not understand the current classification. The focus group and the survey showed clearly the advantage of online access even when the quality of the video surrogate is poor. The evidence gathered suggests that the creation of a digital version of a video archive requires a rethinking of the collection in terms of the new medium: a new archive should be specially designed to exploit the potential that the digital medium offers. Similarly, users' needs have to be considered before designing the digital library interface, as needs are likely to be different from those imagined. Originality/value – This paper is the first attempt to understand the advantages offered and limitations held by video retrieval technology for small video archives like those often found in special collections
    • 

    corecore