53,920 research outputs found

    All hands on deck: CREWED for technology-enabled learning

    Get PDF
    The University of New South Walesā€™ (UNSWā€™s) Faculty of Engineering is introducing a new process for designing and developing blended and fully online (distance) courses, as part of action research to support curriculum renewal. The process, referred to as CREWED (Curriculum Renewal and E-learning Workloads: Embedding in Disciplines), is being used to develop key courses that add flexibility to student progression pathways. By integrating the design of learning activities with the planning and organization of teaching and support work, CREWED addresses some of the known barriers to embedding innovative use of learning technologies within disciplines. CREWED incorporates key features of two course development models from the UK, one emphasising team building and the other emphasising pedagogical planning. It has been piloted in priority curriculum development projects, to ensure that the disciplinary organizational context is supportive. One pilot is a fully online distance version of a postgraduate course. The other is a blended version of an undergraduate course. Both are core (required) courses in accredited professional engineering degree programs and were previously available only in face-to-face mode. The UNSW pilots have confirmed the importance of articulating clear pedagogical models, and of planning ahead for the resources required to put these models into practice, as part of departmental capacity building, especially where teaching has primarily been treated as an individual classroom-based activity that competes with disciplinary research for academic staff time and resources

    An investigation into the use of a blended model of learning

    Get PDF
    The weaknesses of ā€—traditionalā€˜ modes of instruction in accounting education have been widely discussed. Many contend that the traditional approach limits the ability to provide opportunities for students to raise their competency level and allow them to apply knowledge and skills in professional problem solving situations. However, the recent body of literature suggests that accounting educators are indeed actively experimenting with ā€—non-traditionalā€˜ and ā€—innovativeā€˜ instructional approaches, where some authors clearly favour one approach over another. But can one instructional approach alone meet the necessary conditions for different learning objectives? Taking into account the ever changing landscape of not only business environments, but also the higher education sector, the premise guiding the collaborators in this research is that it is perhaps counter productive to promote competing dichotomous views of ā€—traditionalā€˜ and ā€—non-traditionalā€˜ instructional approaches to accounting education, and that the notion of ā€—blended learningā€˜ might provide a useful framework to enhance the learning and teaching of accounting. This paper reports on the first cycle of a longitudinal study, which explores the possibility of using blended learning in first year accounting at one campus of a large regional university. The critical elements of blended learning which emerged in the study are discussed and, consistent with the design-based research framework, the paper also identifies key design modifications for successive cycles of the research

    Learning while Competing -- 3D Modeling & Design

    Full text link
    The e-Yantra project at IIT Bombay conducts an online competition, e-Yantra Robotics Competition (eYRC) which uses a Project Based Learning (PBL) methodology to train students to implement a robotics project in a step-by-step manner over a five-month period. Participation is absolutely free. The competition provides all resources - robot, accessories, and a problem statement - to a participating team. If selected for the finals, e-Yantra pays for them to come to the finals at IIT Bombay. This makes the competition accessible to resource-poor student teams. In this paper, we describe the methodology used in the 6th edition of eYRC, eYRC-2017 where we experimented with a Theme (projects abstracted into rulebooks) involving an advanced topic - 3D Designing and interfacing with sensors and actuators. We demonstrate that the learning outcomes are consistent with our previous studies [1]. We infer that even 3D designing to create a working model can be effectively learned in a competition mode through PBL

    An interactive learning environment in geographical information systems

    Get PDF
    The Unigis Learning Station is a computerā€based learning management tool for the Postgraduate Diploma in Geographical Information Systems by distance learning (correspondence). Unigis is an international network of universities coā€operating in the delivery of such courses. The students on Unigis courses are mature midā€career professionals who study in addition to undertaking full time jobs. The Learning Station offers these students information about the course, resources for independent study, a structured set of exercises, assessments and feedback opportunities, and an integrated and easy way to interact with other course software. Following a brief introduction to the Unigis curriculum, this paper discusses the design of the Learning Station. The roles the Learning Station adopts are outlined, and the range of multimedia and communications tools used discussed. Evaluation of the Learning Station is presented and the issued raised by this provide useful lessons for other computerā€based learning management tools, and the adaptation of the Learning Station to other teaching and learning situations

    Modelling benefits-oriented costs for technology enhanced learning

    Get PDF
    The introduction of technology enhanced learning (TEL) methods changes the deployment of the most important resource in the education system: teachers' and learners' time. New technology promises greater personalization and greater productivity, but without careful modeling of the effects on the use of staff time, TEL methods can easily increase cost without commensurate benefit. The paper examines different approaches to comparing the teaching time costs of TEL with traditional methods, concluding that within-institution cost-benefit modeling yields the most accurate way of understanding how teachers can use the technology to achieve the level of productivity that makes personalisation affordable. The analysis is used to generate a set of requirements for a prospective, rather than retrospective cost-benefit model. It begins with planning decisions focused on realizing the benefits of TEL, and uses these to derive the likely critical costs, hence the reversal implied by a 'benefits-oriented cost model'. One of its principal advantages is that it enables innovators to plan and understand the relationship between the expected learning benefits and the likely teaching costs

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Online Technology Management Student Tutorial Case Study

    Get PDF
    This paper presents a case study of implementing online video-based tutorials to enhance student learning. Initially, these tutorials were developed using a software product, Camtasia, to mitigate learning differences between traditional-based classrooms versus online classes. Because online students often did not receive the same hands-on and visual learning modality that was available to students on traditional classroom settings, tutorials were assumed to level the playing field between these two groups. However, after two years of developing and integrating these tutorials into online classes, it was found that only a small minority of students were using them. Other issues were that tutorials took a long time to develop, and many lecturers felt they were ineffective. This case describes the reasons the tutorials were developed, the integration process, issues raised, and implications for future development
    • ā€¦
    corecore