1,688 research outputs found

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    On IP over WDM burst-switched long haul and metropolitan area networks

    Get PDF
    The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution ushered in by the phenomenal advances in networking technologies and technical breakthroughs in optical communications, fueled by the increasing demand in the reduction of operation costs and the network management complexity. The unprecedented bandwidth provisioning capability and the multi-service supportability of the WDM technology, in synergy with the data-oriented internetworking mechanisms, facilitates a common shared infrastructure for the Next Generation Internet (NGJ). While NGI targets to perform packet processing directly on the optical transport layer, a smooth evolution is critical to success. Intense research has been conducted to design the new generation optical networks that retain the advantages of packet-oriented transport prototypes while rendering elastic network resource utilization and graded levels of service. This dissertation is focused on the control architecture, enabling technologies, and performance analysis of the WDM burst-switched long haul and Metropolitan Area Networks (MANs). Theoretical analysis and simulation results are reported to demonstrate the system performance and efficiency of proposed algorithms. A novel transmission mechanism, namely, the Forward Resource Reservation (ERR) mechanism, is proposed to reduce the end-to-end delay for an Optical Burst Switching (OBS)-based IP over WDM system. The ERR scheme adopts a Linear Predictive Filter and an aggressive reservation strategy for data burst length prediction and resource reservation, respectively, and is extended to facilitate Quality of Service (QoS) differentiation at network edges. The ERR scheme improves the real-time communication services for applications with time constraints without deleterious system costs. The aggressive strategy for channel holding time reservations is proposed. Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth usage-driven (BUD) ones, are proposed for resource reservations in the FRRenabled scheme. These algorithms render explicit control on the latency reduction improvement and bandwidth usage efficiency, respectively, both of which are important figures of performance metrics. The optimization issue for the FRR-enabled system is studied based on two disciplines - addressing the static and dynamic models targeting different desired objectives (in terms of algorithm efficiency and system performance), and developing a \u27\u27crank back\u27\u27 based signaling mechanism to provide bandwidth usage efficiency. The proposed mechanisms enable the network nodes to make intelligent usage of the bandwidth resources. In addition, a new control architecture with enhanced address resolution protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is proposed for Ethernet-supported IP over WDM MANs. It is verified, via theoretical analysis and simulation results, that the E-ARP significantly reduces the call setup latency and the transmission requirements associated with the address probing procedures; the burst-based transport mechanism improves the network throughput and resource utilization; and the hop-based wavelength allocation algorithm provides bandwidth multiplexing with fairness and high scalability. The enhancement of the Ethernet services, in tandem with the innovative mechanisms in the WDM domain, facilitates a flexible and efficient integration, thus making the new generation optical MAN optimized for the scalable, survivable, and IP-dominated network at gigabit speed possible

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    The AURORA Gigabit Testbed

    Get PDF
    AURORA is one of five U.S. networking testbeds charged with exploring applications of, and technologies necessary for, networks operating at gigabit per second or higher bandwidths. The emphasis of the AURORA testbed, distinct from the other four testbeds, BLANCA, CASA, NECTAR, and VISTANET, is research into the supporting technologies for gigabit networking. Like the other testbeds, AURORA itself is an experiment in collaboration, where government initiative (in the form of the Corporation for National Research Initiatives, which is funded by DARPA and the National Science Foundation) has spurred interaction among pre-existing centers of excellence in industry, academia, and government. AURORA has been charged with research into networking technologies that will underpin future high-speed networks. This paper provides an overview of the goals and methodologies employed in AURORA, and points to some preliminary results from our first year of research, ranging from analytic results to experimental prototype hardware. This paper enunciates our targets, which include new software architectures, network abstractions, and hardware technologies, as well as applications for our work

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo
    corecore