66,462 research outputs found

    Distributed Nonconvex Multiagent Optimization Over Time-Varying Networks

    Full text link
    We study nonconvex distributed optimization in multiagent networks where the communications between nodes is modeled as a time-varying sequence of arbitrary digraphs. We introduce a novel broadcast-based distributed algorithmic framework for the (constrained) minimization of the sum of a smooth (possibly nonconvex and nonseparable) function, i.e., the agents' sum-utility, plus a convex (possibly nonsmooth and nonseparable) regularizer. The latter is usually employed to enforce some structure in the solution, typically sparsity. The proposed method hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate the gradients of agents' cost functions; and ii) a novel broadcast protocol to disseminate information and distribute the computation among the agents. Asymptotic convergence to stationary solutions is established. A key feature of the proposed algorithm is that it neither requires the double-stochasticity of the consensus matrices (but only column stochasticity) nor the knowledge of the graph sequence to implement. To the best of our knowledge, the proposed framework is the first broadcast-based distributed algorithm for convex and nonconvex constrained optimization over arbitrary, time-varying digraphs. Numerical results show that our algorithm outperforms current schemes on both convex and nonconvex problems.Comment: Copyright 2001 SS&C. Published in the Proceedings of the 50th annual Asilomar conference on signals, systems, and computers, Nov. 6-9, 2016, CA, US

    Transformation Method for Solving Hamilton-Jacobi-Bellman Equation for Constrained Dynamic Stochastic Optimal Allocation Problem

    Full text link
    In this paper we propose and analyze a method based on the Riccati transformation for solving the evolutionary Hamilton-Jacobi-Bellman equation arising from the stochastic dynamic optimal allocation problem. We show how the fully nonlinear Hamilton-Jacobi-Bellman equation can be transformed into a quasi-linear parabolic equation whose diffusion function is obtained as the value function of certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence, uniqueness and derive useful bounds of classical H\"older smooth solutions. We furthermore construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit traveling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index as an example of application of the method

    A stochastic approximation algorithm for stochastic semidefinite programming

    Full text link
    Motivated by applications to multi-antenna wireless networks, we propose a distributed and asynchronous algorithm for stochastic semidefinite programming. This algorithm is a stochastic approximation of a continous- time matrix exponential scheme regularized by the addition of an entropy-like term to the problem's objective function. We show that the resulting algorithm converges almost surely to an ε\varepsilon-approximation of the optimal solution requiring only an unbiased estimate of the gradient of the problem's stochastic objective. When applied to throughput maximization in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm retains its convergence properties under a wide array of mobility impediments such as user update asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is complemented by extensive numerical simulations which illustrate the robustness and scalability of the proposed method in realistic network conditions.Comment: 25 pages, 4 figure

    Distributed Big-Data Optimization via Block-Iterative Convexification and Averaging

    Full text link
    In this paper, we study distributed big-data nonconvex optimization in multi-agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed
    corecore