148,644 research outputs found

    PC-CUBE: A Personal Computer Based Hypercube

    Get PDF
    PC-CUBE is an ensemble of IBM PCs or close compatibles connected in the hypercube topology with ordinary computer cables. Communication occurs at the rate of 115.2 K-band via the RS-232 serial links. Available for PC-CUBE is the Crystalline Operating System III (CrOS III), Mercury Operating System, CUBIX and PLOTIX which are parallel I/O and graphics libraries. A CrOS performance monitor was developed to facilitate the measurement of communication and computation time of a program and their effects on performance. Also available are CXLISP, a parallel version of the XLISP interpreter; GRAFIX, some graphics routines for the EGA and CGA; and a general execution profiler for determining execution time spent by program subroutines. PC-CUBE provides a programming environment similar to all hypercube systems running CrOS III, Mercury and CUBIX. In addition, every node (personal computer) has its own graphics display monitor and storage devices. These allow data to be displayed or stored at every processor, which has much instructional value and enables easier debugging of applications. Some application programs which are taken from the book Solving Problems on Concurrent Processors (Fox 88) were implemented with graphics enhancement on PC-CUBE. The applications range from solving the Mandelbrot set, Laplace equation, wave equation, long range force interaction, to WaTor, an ecological simulation

    Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design

    Get PDF
    The energy modelling software tools commonly used for architectural purposes do not allow a straightforward real-time implementation within the architectural design programs. In addition, the surrounding exterior spaces of the building, including the inner courtyards, hardly present a specific treatment distinguishing these spaces from the general external temperature in the thermal simulations. This is a clear disadvantage when it comes to streamlining the design process in relation to the whole-building energy optimization. In this context, the present study aims to demonstrate the advantages of the FreeFem++ open source program for performing simulations in architectural environments. These simulations include microclimate tests that describe the interactions between a building architecture and its local exterior. The great potential of this mathematical tool can be realized through its complete system integration within CAD (Computer-Aided Design) software such as SketchUp or AutoCAD. In order to establish the suitability of FreeFem++ for the performance of simulations, the most widely employed energy simulation tools able to consider a proposed architectural geometry in a specific environment are compared. On the basis of this analysis, it can be concluded that FreeFem++ is the only program displaying the best features for the thermal performance simulation of these specific outdoor spaces, excluding the currently unavailable easy interaction with architectural drawing programs. The main contribution of this research is, in fact, the enhancement of FreeFem++ usability by proposing a simple intuitive method for the creation of building geometries and their respective meshing (pre-processing). FreeFem++ is also considered a tool for data analysis (post-processing) able to help engineers and architects with building energy-efficiency-related tasks

    Test, Control and Monitor System maintenance plan

    Get PDF
    The maintenance requirements for Test, Control, and Monitor System (TCMS) and the method for satisfying these requirements prior to First Need Date (FND) of the last TCMS set are described. The method for satisfying maintenance requirements following FND of the last TCMS set will be addressed by a revision to this plan. This maintenance plan serves as the basic planning document for maintenance of this equipment by the NASA Payloads Directorate (CM) and the Payload Ground Operations Contractor (PGOC) at KSC. The terms TCMS Operations and Maintenance (O&M), Payloads Logistics, TCMS Sustaining Engineering, Payload Communications, and Integrated Network Services refer to the appropriate NASA and PGOC organization. For the duration of their contract, the Core Electronic Contractor (CEC) will provide a Set Support Team (SST). One of the primary purposes of this team is to help NASA and PGOC operate and maintain TCMS. It is assumed that SST is an integral part of TCMS O&M. The purpose of this plan is to describe the maintenance concept for TCMS hardware and system software in order to facilitate activation, transition planning, and continuing operation. When software maintenance is mentioned in this plan, it refers to maintenance of TCMS system software
    corecore