2,178 research outputs found

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure

    Path diversity improves the identification of influential spreaders

    Full text link
    Identifying influential spreaders in complex networks is a crucial problem which relates to wide applications. Many methods based on the global information such as kk-shell and PageRank have been applied to rank spreaders. However, most of related previous works overwhelmingly focus on the number of paths for propagation, while whether the paths are diverse enough is usually overlooked. Generally, the spreading ability of a node might not be strong if its propagation depends on one or two paths while the other paths are dead ends. In this Letter, we introduced the concept of path diversity and find that it can largely improve the ranking accuracy. We further propose a local method combining the information of path number and path diversity to identify influential nodes in complex networks. This method is shown to outperform many well-known methods in both undirected and directed networks. Moreover, the efficiency of our method makes it possible to be applied to very large systems.Comment: 6 pages, 6 figure

    Social influence analysis in microblogging platforms - a topic-sensitive based approach

    Get PDF
    The use of Social Media, particularly microblogging platforms such as Twitter, has proven to be an effective channel for promoting ideas to online audiences. In a world where information can bias public opinion it is essential to analyse the propagation and influence of information in large-scale networks. Recent research studying social media data to rank users by topical relevance have largely focused on the “retweet", “following" and “mention" relations. In this paper we propose the use of semantic profiles for deriving influential users based on the retweet subgraph of the Twitter graph. We introduce a variation of the PageRank algorithm for analysing users’ topical and entity influence based on the topical/entity relevance of a retweet relation. Experimental results show that our approach outperforms related algorithms including HITS, InDegree and Topic-Sensitive PageRank. We also introduce VisInfluence, a visualisation platform for presenting top influential users based on a topical query need
    • …
    corecore