6,417 research outputs found

    Processing Large Amounts of Images on Hadoop with OpenCV

    Full text link
    Modern image collections cannot be processed efficiently on one computer due to large collection sizes and high computational costs of modern image processing algorithms. Hence, image processing often requires distributed computing. However, distributed computing is a complicated subject that demands deep technical knowledge and often cannot be used by researches who develop image processing algorithms. The framework is needed that allows the researches to concentrate on image processing tasks and hides from them the complicated details of distributed computing. In addition, the framework should provide the researches with the familiar image processing tools. The paper describes the extension to the MapReduce Image Processing (MIPr) framework that provides the ability to use OpenCV in Hadoop cluster for distributed image processing. The modified MIPr framework allows the development of image processing programs in Java using the OpenCV Java binding. The performance testing of created system on the cloud cluster demonstrated near-linear scalability

    Only Aggressive Elephants are Fast Elephants

    Full text link
    Yellow elephants are slow. A major reason is that they consume their inputs entirely before responding to an elephant rider's orders. Some clever riders have trained their yellow elephants to only consume parts of the inputs before responding. However, the teaching time to make an elephant do that is high. So high that the teaching lessons often do not pay off. We take a different approach. We make elephants aggressive; only this will make them very fast. We propose HAIL (Hadoop Aggressive Indexing Library), an enhancement of HDFS and Hadoop MapReduce that dramatically improves runtimes of several classes of MapReduce jobs. HAIL changes the upload pipeline of HDFS in order to create different clustered indexes on each data block replica. An interesting feature of HAIL is that we typically create a win-win situation: we improve both data upload to HDFS and the runtime of the actual Hadoop MapReduce job. In terms of data upload, HAIL improves over HDFS by up to 60% with the default replication factor of three. In terms of query execution, we demonstrate that HAIL runs up to 68x faster than Hadoop. In our experiments, we use six clusters including physical and EC2 clusters of up to 100 nodes. A series of scalability experiments also demonstrates the superiority of HAIL.Comment: VLDB201

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201

    Optimizing the MapReduce Framework on Intel Xeon Phi Coprocessor

    Full text link
    With the ease-of-programming, flexibility and yet efficiency, MapReduce has become one of the most popular frameworks for building big-data applications. MapReduce was originally designed for distributed-computing, and has been extended to various architectures, e,g, multi-core CPUs, GPUs and FPGAs. In this work, we focus on optimizing the MapReduce framework on Xeon Phi, which is the latest product released by Intel based on the Many Integrated Core Architecture. To the best of our knowledge, this is the first work to optimize the MapReduce framework on the Xeon Phi. In our work, we utilize advanced features of the Xeon Phi to achieve high performance. In order to take advantage of the SIMD vector processing units, we propose a vectorization friendly technique for the map phase to assist the auto-vectorization as well as develop SIMD hash computation algorithms. Furthermore, we utilize MIMD hyper-threading to pipeline the map and reduce to improve the resource utilization. We also eliminate multiple local arrays but use low cost atomic operations on the global array for some applications, which can improve the thread scalability and data locality due to the coherent L2 caches. Finally, for a given application, our framework can either automatically detect suitable techniques to apply or provide guideline for users at compilation time. We conduct comprehensive experiments to benchmark the Xeon Phi and compare our optimized MapReduce framework with a state-of-the-art multi-core based MapReduce framework (Phoenix++). By evaluating six real-world applications, the experimental results show that our optimized framework is 1.2X to 38X faster than Phoenix++ for various applications on the Xeon Phi
    corecore