714 research outputs found

    Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)

    Full text link
    Recently it was shown that the problem of Maximum Inner Product Search (MIPS) is efficient and it admits provably sub-linear hashing algorithms. Asymmetric transformations before hashing were the key in solving MIPS which was otherwise hard. In the prior work, the authors use asymmetric transformations which convert the problem of approximate MIPS into the problem of approximate near neighbor search which can be efficiently solved using hashing. In this work, we provide a different transformation which converts the problem of approximate MIPS into the problem of approximate cosine similarity search which can be efficiently solved using signed random projections. Theoretical analysis show that the new scheme is significantly better than the original scheme for MIPS. Experimental evaluations strongly support the theoretical findings.Comment: arXiv admin note: text overlap with arXiv:1405.586

    On Symmetric and Asymmetric LSHs for Inner Product Search

    Full text link
    We consider the problem of designing locality sensitive hashes (LSH) for inner product similarity, and of the power of asymmetric hashes in this context. Shrivastava and Li argue that there is no symmetric LSH for the problem and propose an asymmetric LSH based on different mappings for query and database points. However, we show there does exist a simple symmetric LSH that enjoys stronger guarantees and better empirical performance than the asymmetric LSH they suggest. We also show a variant of the settings where asymmetry is in-fact needed, but there a different asymmetric LSH is required.Comment: 11 pages, 3 figures, In Proceedings of The 32nd International Conference on Machine Learning (ICML

    Tradeoffs for nearest neighbors on the sphere

    Get PDF
    We consider tradeoffs between the query and update complexities for the (approximate) nearest neighbor problem on the sphere, extending the recent spherical filters to sparse regimes and generalizing the scheme and analysis to account for different tradeoffs. In a nutshell, for the sparse regime the tradeoff between the query complexity nρqn^{\rho_q} and update complexity nρun^{\rho_u} for data sets of size nn is given by the following equation in terms of the approximation factor cc and the exponents ρq\rho_q and ρu\rho_u: c2ρq+(c21)ρu=2c21.c^2\sqrt{\rho_q}+(c^2-1)\sqrt{\rho_u}=\sqrt{2c^2-1}. For small c=1+ϵc=1+\epsilon, minimizing the time for updates leads to a linear space complexity at the cost of a query time complexity n14ϵ2n^{1-4\epsilon^2}. Balancing the query and update costs leads to optimal complexities n1/(2c21)n^{1/(2c^2-1)}, matching bounds from [Andoni-Razenshteyn, 2015] and [Dubiner, IEEE-TIT'10] and matching the asymptotic complexities of [Andoni-Razenshteyn, STOC'15] and [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt, NIPS'15]. A subpolynomial query time complexity no(1)n^{o(1)} can be achieved at the cost of a space complexity of the order n1/(4ϵ2)n^{1/(4\epsilon^2)}, matching the bound nΩ(1/ϵ2)n^{\Omega(1/\epsilon^2)} of [Andoni-Indyk-Patrascu, FOCS'06] and [Panigrahy-Talwar-Wieder, FOCS'10] and improving upon results of [Indyk-Motwani, STOC'98] and [Kushilevitz-Ostrovsky-Rabani, STOC'98]. For large cc, minimizing the update complexity results in a query complexity of n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the related exponent for large cc of [Kapralov, PODS'15] by a factor 22, and matching the bound nΩ(1/c2)n^{\Omega(1/c^2)} of [Panigrahy-Talwar-Wieder, FOCS'08]. Balancing the costs leads to optimal complexities n1/(2c21)n^{1/(2c^2-1)}, while a minimum query time complexity can be achieved with update complexity n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the previous best exponents of Kapralov by a factor 22.Comment: 16 pages, 1 table, 2 figures. Mostly subsumed by arXiv:1608.03580 [cs.DS] (along with arXiv:1605.02701 [cs.DS]

    When Hashing Met Matching: Efficient Spatio-Temporal Search for Ridesharing

    Full text link
    Carpooling, or sharing a ride with other passengers, holds immense potential for urban transportation. Ridesharing platforms enable such sharing of rides using real-time data. Finding ride matches in real-time at urban scale is a difficult combinatorial optimization task and mostly heuristic approaches are applied. In this work, we mathematically model the problem as that of finding near-neighbors and devise a novel efficient spatio-temporal search algorithm based on the theory of locality sensitive hashing for Maximum Inner Product Search (MIPS). The proposed algorithm can find kk near-optimal potential matches for every ride from a pool of nn rides in time O(n1+ρ(k+logn)logk)O(n^{1 + \rho} (k + \log n) \log k) and space O(n1+ρlogk)O(n^{1 + \rho} \log k) for a small ρ<1\rho < 1. Our algorithm can be extended in several useful and interesting ways increasing its practical appeal. Experiments with large NY yellow taxi trip datasets show that our algorithm consistently outperforms state-of-the-art heuristic methods thereby proving its practical applicability

    Hashing for Similarity Search: A Survey

    Full text link
    Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing, which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in the hash coding space

    Scalable and Sustainable Deep Learning via Randomized Hashing

    Full text link
    Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with both training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing based technique to drastically reduce the amount of computation needed to train and test deep networks. Our approach combines recent ideas from adaptive dropouts and randomized hashing for maximum inner product search to select the nodes with the highest activation efficiently. Our new algorithm for deep learning reduces the overall computational cost of forward and back-propagation by operating on significantly fewer (sparse) nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping on average within 1% of the accuracy of the original model. A unique property of the proposed hashing based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous and parallel training leading to near linear speedup with increasing number of cores. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several real datasets
    corecore